26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Microalgal Extracts of Tetraselmis suecica against UVB-Induced Photoaging in Human Skin Fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exposure of cells to ultraviolet B (UVB) radiation can induce production of free radicals and reactive oxygen species (ROS), which damage cellular components. In addition, these agents can stimulate the expression of matrix metalloproteinase (MMP) and decrease collagen synthesis in human skin cells. In this study, we examined the anti-photoaging effects of extracts of Tetraselmis suecica (W-TS). W-TS showed the strongest scavenging activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals, followed by superoxide anions from the xanthine/xanthine oxidase system. We observed that the levels of both intracellular ROS and lipid peroxidation significantly increased in UVB-irradiated human skin fibroblast cells. Furthermore, the activities of enzymatic antioxidants (e.g., superoxide dismutase) and the levels of non-enzymatic antioxidants (e.g., glutathione) significantly decreased in cells. However, W-TS pretreatment, at the maximum tested concentration, significantly decreased intracellular ROS and malondialdehyde (MDA) levels, and increased superoxide dismutase and glutathione levels in the cells. At this same concentration, W-TS did not show cytotoxicity. Type 1 procollagen and MMP-1 released were quantified using RT-PCR techniques. The results showed that W-TS protected type 1 procollagen against UVBinduced depletion in fibroblast cells in a dose-dependent manner via inhibition of UVB-induced MMP-1. Taken together, the results of the study suggest that W-TS effectively inhibits UVB-induced photoaging in skin fibroblasts by its strong anti-oxidant ability.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          The chemistry and antioxidant properties of tocopherols and tocotrienols.

          This article is a review of the fundamental chemistry of the tocopherols and tocotrienols relevant to their antioxidant action. Despite the general agreement that alpha-tocopherol is the most efficient antioxidant and vitamin E homologue in vivo, there was always a considerable discrepancy in its "absolute" and "relative" antioxidant effectiveness in vitro, especially when compared to gamma-tocopherol. Many chemical, physical, biochemical, physicochemical, and other factors seem responsible for the observed discrepancy between the relative antioxidant potencies of the tocopherols in vivo and in vitro. This paper aims at highlighting some possible reasons for the observed differences between the tocopherols (alpha-, beta-, gamma-, and delta-) in relation to their interactions with the important chemical species involved in lipid peroxidation, specifically trace metal ions, singlet oxygen, nitrogen oxides, and antioxidant synergists. Although literature reports related to the chemistry of the tocotrienols are quite meager, they also were included in the discussion in virtue of their structural and functional resemblance to the tocopherols.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin.

            Damage to human skin due to ultraviolet light from the sun (photoaging) and damage occurring as a consequence of the passage of time (chronologic or natural aging) are considered to be distinct entities. Photoaging is caused in part by damage to skin connective tissue by increased elaboration of collagen-degrading matrix metalloproteinases, and by reduced collagen synthesis. As matrix metalloproteinase levels are known to rise in fibroblasts as a function of age, and as oxidant stress is believed to underlie changes associated with both photoaging and natural aging, we determined whether natural skin aging, like photoaging, gives rise to increased matrix metalloproteinases and reduced collagen synthesis. In addition, we determined whether topical vitamin A (retinol) could stimulate new collagen deposition in sun-protected aged skin, as it does in photoaged skin. Sun-protected skin samples were obtained from 72 individuals in four age groups: 18-29 y, 30-59 y, 60-79 y, and 80+ y. Histologic and cellular markers of connective tissue abnormalities were significantly elevated in the 60-79 y and 80+ y groups, compared with the two younger age groups. Increased matrix metalloproteinase levels and decreased collagen synthesis/expression were associated with this connective tissue damage. In a separate group of 53 individuals (80+ y of age), topical application of 1% vitamin A for 7 d increased fibroblast growth and collagen synthesis, and concomitantly reduced the levels of matrix-degrading matrix metalloproteinases. Our findings indicate that naturally aged, sun-protected skin and photoaged skin share important molecular features including connective tissue damage, elevated matrix metalloproteinase levels, and reduced collagen production. In addition, vitamin A treatment reduces matrix metalloproteinase expression and stimulates collagen synthesis in naturally aged, sun-protected skin, as it does in photoaged skin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of photoaging and chronological skin aging.

              Human skin, like all other organs, undergoes chronological aging. In addition, unlike other organs, skin is in direct contact with the environment and therefore undergoes aging as a consequence of environmental damage. The primary environmental factor that causes human skin aging is UV irradiation from the sun. This sun-induced skin aging (photoaging), like chronological aging, is a cumulative process. However, unlike chronological aging, which depends on the passage of time per se, photoaging depends primarily on the degree of sun exposure and skin pigment. Individuals who have outdoor lifestyles, live in sunny climates, and are lightly pigmented will experience the greatest degree of photoaging. During the last decade, substantial progress has been made in understanding cellular and molecular mechanisms that bring about chronological aging and photoaging. This emerging information reveals that chronological aging and photoaging share fundamental molecular pathways. These new insights regarding convergence of the molecular basis of chronological aging and photoaging provide exciting new opportunities for the development of new anti-aging therapies. This article reviews our current understanding and presents new data about the molecular pathways that mediate skin damage by UV irradiation and by the passage of time.
                Bookmark

                Author and article information

                Journal
                Toxicol Res
                Toxicol Res
                ksot
                Toxicological Research
                The Korean Society of Toxicology
                1976-8257
                December 2012
                : 28
                : 4
                : 241-248
                Affiliations
                [1 ]Department of Research center, Dong Nam Institute of Radiological & Medical Sciences, Busan, Korea
                [2 ]Department of Microbiology, College of Medicine, Dong-A University, Busan, Korea
                [4 ]Test and Certification Team, Marine Bio-industry Development Center, Busan, Korea
                Author notes
                Correspondence to: Yoo Jin Choi, Department of Research center, Dong Nam Institute of Radiological & Medical Sciences, Busan 619-953, Korea E-mail: cyj5325@ 123456dirams.re.kr Min Ho Jeong, Department of Microbiology, College of Medicine, Dong-A University, Busan 602-714, Korea E-mail: mhjeong@ 123456dau.ac.kr
                Article
                toxicr-28-241
                10.5487/TR.2012.28.4.241
                3834434
                72f74eea-70d5-4586-94f3-a1ab18387f18
                Copyright ©2012, The Korean Society of Toxicology

                This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 August 2012
                : 15 November 2012
                : 26 November 2012
                Categories
                Articles

                tetraselmis suecica,ultraviolet b,photo aging,reactive oxygen species,anti-oxidant

                Comments

                Comment on this article