9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of combination of aliskiren and pentoxyfylline on renal function in the rat remnant kidney model of chronic renal failure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives:

          The aim was to investigate the nephroprotective effect of combination of aliskiren (ASK), a direct renin inhibitor and pentoxifylline (PTX), inhibitor of tumor necrotic factor-alpha (TNF-alpha), in rat remnant kidney model of chronic kidney disease (CKD).

          Materials and Methods:

          Nephrectomized (NPX) rats were treated with ASK (10 mg/kg, p.o.), PTX (100 mg/kg, p.o.), and combination of PTX + ASK once daily for 28 days. We have performed analysis of various renal injury parameters after 4 weeks of treatment.

          Results:

          Treatment with PTX, ASK and combination showed significant improvement in urea, creatinine and total protein in plasma when compared with vehicle treated group in NPX rats. ASK and combination of PTX + ASK elicited significant reduction in blood pressure but PTX alone did not produce blood pressure reduction. ASK treatment showed significant elevation in TNF-alpha, whereas PTX and ASK + PTX showed significant reduction in TNF-alpha in plasma. Histopathologically, the extent of the kidney injury was similar in NPX + vehicle and NPX + ASK-treated rats. PTX and ASK + PTX-treated group showed lesser extent of kidney injury. There was good correlation of mRNA expression levels of kidney injury molecule-1 and bradykinin B1 receptor data with histopathological findings in kidney samples and elevated TNF-alpha levels in plasma.

          Conclusions:

          We conclude that combination of PTX + ASK may be better therapeutic intervention for nephroprotection in CKD patients.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium.

          Sensitive biomarkers are needed to detect kidney injury at the earliest stages. The objective of this study was to determine whether the appearance of kidney injury molecule-1 (Kim-1) protein ectodomain in urine and kidney injury molecule-1/hepatitis A viral cellular receptor-1 (Kim-1/Havcr1) gene expression in kidney tissue may be more predictive of renal injury after exposure to nephrotoxicants when compared to traditionally used biomarkers. Male Sprague-Dawley rats were injected with a range of doses of gentamicin, mercury (Hg; HgCl2), or chromium (Cr; K2Cr2O7). The results showed that increases in urinary Kim-1 and kidney Kim-1/Havcr1 gene expression paralleled the degree of severity of renal histopathology and were detected at lower doses of nephrotoxicants when compared to blood urea nitrogen (BUN), serum creatinine, and urinary N-acetyl-beta-D-glucosaminidase (NAG). In a time course study, urinary Kim-1 was elevated within 24 h after exposure to gentamicin (100 mg/kg), Hg (0.25 mg/kg), or Cr (5 mg/kg) and remained elevated through 72 h. NAG responses were nephrotoxicant dependent with elevations occurring early (gentamicin), late (Cr), or no change (Hg). At 72 h, after treatment with any of the three nephrotoxicants, there was increased Kim-1 immunoreactivity and necrosis involving approximately 50% of the proximal tubules; however, only urinary Kim-1 was significantly increased, while BUN, serum creatinine, and NAG were not different from controls. In rats treated with the hepatotoxicant galactosamine (1.1 mg/kg), serum alanine aminotransferase was increased, but no increase in urinary Kim-1 was observed. Urinary Kim-1 and kidney Kim-1/Havcr1 expression appear to be sensitive and tissue-specific biomarkers that will improve detection of early acute kidney injury following exposure to nephrotoxic chemicals and drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications.

            It is no a secret that we are confronted by an alarmingly increasing number of patients with progressive renal disease. There is ample evidence for the notion that angiotensin II (Ang II) is a major culprit in progression. The vasopeptide Ang II turned out to have also multiple nonhemodynamic pathophysiologic actions on the kidney, including proinflammatory and profibrogenic effects. Diverse complex Ang II generating systems have been identified, including specifically local tissue-specific renin-angiotensin systems (RAS). For example, proximal tubular cells have all components required for a functional RAS capable of synthesizing Ang II. On the other hand, Ang II is not the only effector of the RAS and other peptides generated by the RAS influence renal function and structure as well. Moreover, the discoveries that Ang II can be generated by enzymes other than angiotensin-converting enzyme (ACE) and that Ang II and other RAS derived peptides bind to various receptors with different functional consequences have further added to the complexity of this system. Several major clinical trials have clearly shown that ACE inhibitor treatment slows the progression of renal diseases, including in diabetic nephropathy. Well-controlled studies demonstrated that this effect is in part independent of blood pressure control. More recently, with Ang II type 1 receptor (AT(1)) receptor antagonists a similarly protective effect on renal function was seen in patients with type 2 diabetes. Neither ACE inhibitor treatment nor AT(1) receptor blockade completely abrogate progression of renal disease. A recently introduced novel therapeutic approach is combination treatment comprising both ACE inhibitor and AT(1) receptor antagonists. The rationale for this approach is based on several considerations. Small-scale clinical studies, mainly of crossover design, documented that combination therapy is more potent in reducing proteinuria in patients with different chronic renal diseases. Blood pressure as an important confounder was, however, significantly lower in the majority of this studies in the combination treatment arms compared to the respective monotherapies. In a recent prospective study Japanese authors avoided this confounder and demonstrated that combination therapy reduced hard end-points (end stage renal failure or doubling of serum creatinine concentration) by 50% compared to the respective monotherapies. This effect could not be explained by a more pronounced reduction of blood pressure in the combination therapy group. Although these results are encouraging, administration of combination therapy should be reserved currently to special high risk groups. Further studies are necessary to confirm these promising results. It is possible that combination therapy may increase the risk of hyperkalemia, particularly when with coadministered with medications such as nonsteroidal anti-inflammatory drugs (NSAIDs) or spironolactone. In our opinion patients with proteinuria >1 g/day despite optimal blood pressure control under RAS-blocking monotherapy are a high-risk group which will presumably benefit from combination therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A rapid urine test for early detection of kidney injury.

              Kidney injury molecule-1 (Kim-1) has been qualified by the Food and Drug Administration and European Medicines Agency as a highly sensitive and specific urinary biomarker to monitor drug-induced kidney injury in preclinical studies and on a case-by-case basis in clinical trials. Here we report the development and evaluation of a rapid direct immunochromatographic lateral flow 15-min assay for detection of urinary Kim-1 (rat) or KIM-1 (human). The urinary Kim-1 band intensity using the rat Kim-1 dipstick significantly correlated with levels of Kim-1 as measured by a microbead-based assay, histopathological damage, and immunohistochemical assessment of renal Kim-1 in a dose- and time-dependent manner. Kim-1 was detected following kidney injury induced in rats by cadmium, gentamicin, or bilateral renal ischemia/reperfusion. In humans, the urinary KIM-1 band intensity was significantly greater in urine from patients with acute kidney injury than in urine from healthy volunteers. The KIM-1 dipstick also enabled temporal evaluation of kidney injury and recovery in two patients who developed postoperative acute kidney injury following cytoreductive surgery for malignant mesothelioma with intraoperative local cisplatin administration. We hope that future, more extensive studies will confirm the utility of these results, which show that the Kim-1/KIM-1 dipsticks can provide a sensitive and accurate detection of Kim-1/KIM-1, thereby providing a rapid diagnostic assay for kidney damage and facilitating the rapid and early detection of kidney injury in preclinical and clinical studies.
                Bookmark

                Author and article information

                Journal
                Indian J Pharmacol
                Indian J Pharmacol
                IJPharm
                Indian Journal of Pharmacology
                Medknow Publications & Media Pvt Ltd (India )
                0253-7613
                1998-3751
                Jan-Feb 2015
                : 47
                : 1
                : 80-85
                Affiliations
                [1]Zydus Research Centre, Sarkhej-Bavla, Moraiya, Ahmedabad, India
                [1 ]Department of Pharmacology, Torrent Pharmaceuticals Ltd, Research Centre, Village-Bhat, Gandhinagar, Ahmedabad, India
                [2 ]Department of Pharmacology, C. U. Shah College of Pharmacy and Research, Wadhwan, Gujarat, India
                Author notes
                Correspondence to: Dr. Hitesh Soni, E-mail: drhiteshsoni@ 123456gmail.com
                Article
                IJPharm-47-80
                10.4103/0253-7613.150351
                4375824
                72fb4e37-8efa-41af-a6d7-72a0b50a37e6
                Copyright: © Indian Journal of Pharmacology

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 September 2014
                : 10 December 2014
                : 22 December 2014
                Categories
                Research Article

                Pharmacology & Pharmaceutical medicine
                aliskiren,bradykinin b1 receptor,chronic kidney disease,kidney injury molecule-1,nephroprotection,pentoxyfylline

                Comments

                Comment on this article