23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insulators and imprinting from flies to mammals

      research-article
      1 , 1 ,
      BMC Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nuclear factor CTCF has been shown to be necessary for the maintenance of genetic imprinting at the mammalian H19/Igf2 locus. MacDonald and colleagues now report in BMC Biology that the mechanisms responsible for maintaining the imprinted state in Drosophila may be evolutionarily conserved and that CTCF may also play a critical role in this process.

          See research article http://www.biomedcentral.com/1741-7007/8/105

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2.

          It is thought that the H19 imprinting control region (ICR) directs the silencing of the maternally inherited Igf2 allele through a CTCF-dependent chromatin insulator. The ICR has been shown to interact physically with a silencer region in Igf2, differentially methylated region (DMR)1, but the role of CTCF in this chromatin loop and whether it restricts the physical access of distal enhancers to Igf2 is not known. We performed systematic chromosome conformation capture analyses in the Igf2/H19 region over >160 kb, identifying sequences that interact physically with the distal enhancers and the ICR. We found that, on the paternal chromosome, enhancers interact with the Igf2 promoters but that, on the maternal allele, this is prevented by CTCF binding within the H19 ICR. CTCF binding in the maternal ICR regulates its interaction with matrix attachment region (MAR)3 and DMR1 at Igf2, thus forming a tight loop around the maternal Igf2 locus, which may contribute to its silencing. Mutation of CTCF binding sites in the H19 ICR leads to loss of CTCF binding and de novo methylation of a CTCF target site within Igf2 DMR1, showing that CTCF can coordinate regional epigenetic marks. This systematic chromosome conformation capture analysis of an imprinting cluster reveals that CTCF has a critical role in the epigenetic regulation of higher-order chromatin structure and gene silencing over considerable distances in the genome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Completion of mouse embryogenesis requires both the maternal and paternal genomes.

            Transplantation of pronuclei between one-cell-stage embryos was used to construct diploid mouse embryos with two female pronuclei ( biparental gynogenones ) or two male pronuclei ( biparental androgenones ). The ability of these embryos to develop to term was compared with control nuclear-transplant embryos in which the male or the female pronucleus was replaced with an isoparental pronucleus from another embryo. The results show that diploid biparental gynogenetic and androgenetic embryos do not complete normal embryogenesis, whereas control nuclear transplant embryos do. We conclude that the maternal and paternal contributions to the embryonic genome in mammals are not equivalent and that a diploid genome derived from only one of the two parental sexes is incapable of supporting complete embryogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis.

              It has been suggested that the failure of parthenogenetic mouse embryos to develop to term is primarily due to their aberrant cytoplasm and homozygosity leading to the expression of recessive lethal genes. The reported birth of homozygous gynogenetic (male pronucleus removed from egg after fertilization) mice and of animals following transplantation of nuclei from parthenogenetic embryos to enucleated fertilized eggs, is indicative of abnormal cytoplasm and not an abnormal genotype of the activated eggs. However, we and others have been unable to obtain such homozygous mice. We investigated this problem further by using reconstituted heterozygous eggs, with haploid parthenogenetic eggs as recipients for a male or female pronucleus. We report here that the eggs which receive a male pronucleus develop to term but those with two female pronuclei develop only poorly after implantation. Therefore, the cytoplasm of activated eggs is fully competent to support development to term but not if the genome is entirely of maternal origin. We propose that specific imprinting of the genome occurs during gametogenesis so that the presence of both a male and a female pronucleus is essential in an egg for full-term development. The paternal imprinting of the genome appears necessary for the normal development of the extraembryonic membranes and the trophoblast.
                Bookmark

                Author and article information

                Journal
                BMC Biol
                BMC Biology
                BioMed Central
                1741-7007
                2010
                30 July 2010
                : 8
                : 104
                Affiliations
                [1 ]Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
                Article
                1741-7007-8-104
                10.1186/1741-7007-8-104
                2912829
                20687908
                7305295b-5399-42b6-ace4-999689012b7f
                Copyright ©2010 Hou and Corces; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 July 2010
                : 28 July 2010
                Categories
                Commentary

                Life sciences
                Life sciences

                Comments

                Comment on this article