14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      [18F]2-Fluoro-2-deoxy-sorbitol PET Imaging for Quantitative Monitoring of Enhanced Blood-Brain Barrier Permeability Induced by Focused Ultrasound

      , , , , , , ,
      Pharmaceutics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Focused ultrasound in combination with microbubbles (FUS) provides an effective means to locally enhance the delivery of therapeutics to the brain. Translational and quantitative imaging techniques are needed to noninvasively monitor and optimize the impact of FUS on blood-brain barrier (BBB) permeability in vivo. Positron-emission tomography (PET) imaging using [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS) was evaluated as a small-molecule (paracellular) marker of blood-brain barrier (BBB) integrity. [18F]FDS was straightforwardly produced from chemical reduction of commercial [18F]2-deoxy-2-fluoro-D-glucose. [18F]FDS and the invasive BBB integrity marker Evan’s blue (EB) were i.v. injected in mice after an optimized FUS protocol designed to generate controlled hemispheric BBB disruption. Quantitative determination of the impact of FUS on the BBB permeability was determined using kinetic modeling. A 2.2 ± 0.5-fold higher PET signal (n = 5; p < 0.01) was obtained in the sonicated hemisphere and colocalized with EB staining observed post mortem. FUS significantly increased the blood-to-brain distribution of [18F]FDS by 2.4 ± 0.8-fold (VT; p < 0.01). Low variability (=10.1%) of VT values in the sonicated hemisphere suggests reproducibility of the estimation of BBB permeability and FUS method. [18F]FDS PET provides a readily available, sensitive and reproducible marker of BBB permeability to noninvasively monitor the extent of BBB disruption induced by FUS in vivo.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Structure and function of the blood-brain barrier.

          Neural signalling within the central nervous system (CNS) requires a highly controlled microenvironment. Cells at three key interfaces form barriers between the blood and the CNS: the blood-brain barrier (BBB), blood-CSF barrier and the arachnoid barrier. The BBB at the level of brain microvessel endothelium is the major site of blood-CNS exchange. The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms. The roles of associated cells are outlined, especially the endfeet of astrocytic glial cells, and pericytes and microglia. The embryonic development of the BBB, and changes in pathology are described. The BBB is subject to short and long-term regulation, which may be disturbed in pathology. Any programme for drug discovery or delivery, to target or avoid the CNS, needs to consider the special features of the BBB.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development, maintenance and disruption of the blood-brain barrier.

            The interface between the blood circulation and the neural tissue features unique characteristics that are encompassed by the term 'blood-brain barrier' (BBB). The main functions of this barrier, namely maintenance of brain homeostasis, regulation of influx and efflux transport, and protection from harm, are determined by its specialized multicellular structure. Every constituent cell type makes an indispensable contribution to the BBB's integrity. But if one member of the BBB fails, and as a result the barrier breaks down, there can be dramatic consequences and neuroinflammation and neurodegeneration can occur. In this Review, we highlight recently gained mechanistic insights into the development and maintenance of the BBB. We then discuss how BBB disruption can cause or contribute to neurological disease. Finally, we examine how this knowledge can be used to explore new possibilities for BBB repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The blood-brain barrier: bottleneck in brain drug development.

              The blood-brain barrier (BBB) is formed by the brain capillary endothelium and excludes from the brain approximately 100% of large-molecule neurotherapeutics and more than 98% of all small-molecule drugs. Despite the importance of the BBB to the neurotherapeutics mission, the BBB receives insufficient attention in either academic neuroscience or industry programs. The combination of so little effort in developing solutions to the BBB problem, and the minimal BBB transport of the majority of all potential CNS drugs, leads predictably to the present situation in neurotherapeutics, which is that there are few effective treatments for the majority of CNS disorders. This situation can be reversed by an accelerated effort to develop a knowledge base in the fundamental transport properties of the BBB, and the molecular and cellular biology of the brain capillary endothelium. This provides the platform for CNS drug delivery programs, which should be developed in parallel with traditional CNS drug discovery efforts in the molecular neurosciences.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                PHARK5
                Pharmaceutics
                Pharmaceutics
                MDPI AG
                1999-4923
                November 2021
                October 20 2021
                : 13
                : 11
                : 1752
                Article
                10.3390/pharmaceutics13111752
                34834167
                730f0cbb-e8da-4c65-a09c-6c6ed9333d14
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article