0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reversal of hair greying following autologous adipose mesenchymal stem cell transplantations: a coincidental finding

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth

          Hepatocyte Growth Factor (HGF, also known as Scatter Factor) is a powerful mitogen or motility factor in different cells, acting through the tyrosine kinase receptor encoded by the MET protooncogene. Endothelial cells express the MET gene and expose at the cell surface the mature protein (p190MET) made of a 50 kD (alpha) subunit disulfide linked to a 145-kD (beta) subunit. HGF binding to endothelial cells identifies two sites with different affinities. The higher affinity binding site (Kd = 0.35 nM) corresponds to the p190MET receptor. Sub- nanomolar concentrations of HGF, but not of a recombinant inactive precursor, stimulate the receptor kinase activity, cell proliferation and motility. HGF induces repairs of a wound in endothelial cell monolayer. HGF stimulates the scatter of endothelial cells grown on three-dimensional collagen gels, inducing an elongated phenotype. In the rabbit cornea, highly purified HGF promotes neovascularization at sub-nanomolar concentrations. HGF lacks activities related to hemostasis-thrombosis, inflammation and endothelial cells accessory functions. These data show that HGF is an in vivo potent angiogenic factor and in vitro induces endothelial cells to proliferate and migrate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dominant role of the niche in melanocyte stem-cell fate determination.

            Stem cells which have the capacity to self-renew and generate differentiated progeny are thought to be maintained in a specific environment known as a niche. The localization of the niche, however, remains largely obscure for most stem-cell systems. Melanocytes (pigment cells) in hair follicles proliferate and differentiate closely coupled to the hair regeneration cycle. Here we report that stem cells of the melanocyte lineage can be identified, using Dct-lacZ transgenic mice, in the lower permanent portion of mouse hair follicles throughout the hair cycle. It is only the population in this region that fulfils the criteria for stem cells, being immature, slow cycling, self-maintaining and fully competent in regenerating progeny on activation at early anagen (the growing phase of hair follicles). Induction of the re-pigmentation process in K14-steel factor transgenic mice demonstrates that a portion of amplifying stem-cell progeny can migrate out from the niche and retain sufficient self-renewing capability to function as stem cells after repopulation into vacant niches. Our data indicate that the niche has a dominant role in the fate determination of melanocyte stem-cell progeny.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurorestorative treatment of stroke: cell and pharmacological approaches.

              There is a compelling need to develop cell and pharmacological therapeutic approaches to be administered beyond the hyperacute phase of stroke. These therapies capitalize on the capacity of the brain for neuroregeneration and neuroplasticity and are designed to reduce neurological deficits after stroke. This review provides an update of bone marrow-derived mesenchymal stem cells (MSCs) and select pharmacological agents in clinical use for other indications that promote the recovery process in the subacute and chronic phases after stroke. Among these agents are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), erythropoietin (EPO), and phosphodiesterase type 5 (PDE-5) inhibitors and nitric oxide (NO) donors. Both the MSCs and the pharmacologic agents potentiate brain plasticity and neurobehavioral recovery after stroke.
                Bookmark

                Author and article information

                Journal
                Stem Cell Biology and Research
                Stem Cell Biol Res
                Herbert Publications PVT LTD
                2054-717X
                2015
                2015
                : 2
                : 1
                : 3
                Article
                10.7243/2054-717X-2-3
                731db08d-6782-410c-9546-c12e6fc5eda6
                © 2015
                History

                Comments

                Comment on this article