259
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GSVA: gene set variation analysis for microarray and RNA-Seq data

      product-review
      1 , 2 , 1 , 2 , , 3 ,
      BMC Bioinformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets.

          Results

          To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments.

          Conclusions

          GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          An integrative genomics approach to infer causal associations between gene expression and disease.

          A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene-perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Independent filtering increases detection power for high-throughput experiments.

            With high-dimensional data, variable-by-variable statistical testing is often used to select variables whose behavior differs across conditions. Such an approach requires adjustment for multiple testing, which can result in low statistical power. A two-stage approach that first filters variables by a criterion independent of the test statistic, and then only tests variables which pass the filter, can provide higher power. We show that use of some filter/test statistics pairs presented in the literature may, however, lead to loss of type I error control. We describe other pairs which avoid this problem. In an application to microarray data, we found that gene-by-gene filtering by overall variance followed by a t-test increased the number of discoveries by 50%. We also show that this particular statistic pair induces a lower bound on fold-change among the set of discoveries. Independent filtering-using filter/test pairs that are independent under the null hypothesis but correlated under the alternative-is a general approach that can substantially increase the efficiency of experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ontological analysis of gene expression data: current tools, limitations, and open problems.

              Independent of the platform and the analysis methods used, the result of a microarray experiment is, in most cases, a list of differentially expressed genes. An automatic ontological analysis approach has been recently proposed to help with the biological interpretation of such results. Currently, this approach is the de facto standard for the secondary analysis of high throughput experiments and a large number of tools have been developed for this purpose. We present a detailed comparison of 14 such tools using the following criteria: scope of the analysis, visualization capabilities, statistical model(s) used, correction for multiple comparisons, reference microarrays available, installation issues and sources of annotation data. This detailed analysis of the capabilities of these tools will help researchers choose the most appropriate tool for a given type of analysis. More importantly, in spite of the fact that this type of analysis has been generally adopted, this approach has several important intrinsic drawbacks. These drawbacks are associated with all tools discussed and represent conceptual limitations of the current state-of-the-art in ontological analysis. We propose these as challenges for the next generation of secondary data analysis tools.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central
                1471-2105
                2013
                16 January 2013
                : 14
                : 7
                Affiliations
                [1 ]Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
                [2 ]Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
                [3 ]Sage Bionetworks, 1100 Fairview Ave N., Seattle, Washington, 98109, USA
                Article
                1471-2105-14-7
                10.1186/1471-2105-14-7
                3618321
                23323831
                732666e3-2f45-40a3-9f8b-6d4e0c96e85b
                Copyright ©2013 Hänzelmann et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 May 2012
                : 21 December 2012
                Categories
                Software

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article