13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Empagliflozin and Dulaglutide are Effective against Obesity-induced Airway Hyperresponsiveness and Fibrosis in A Murine Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with asthma with obesity experience severe symptoms, are unresponsive to conventional asthma treatment, and lack proper pharmacotherapy. Empagliflozin and dulaglutide, developed for diabetes, reduce weight, decrease insulin resistance, and exert additive effects. We evaluated the efficacy of empagliflozin, dulaglutide, and their combination on obesity-induced airway hyperresponsiveness (AHR) and lung fibrosis using a murine model. We assigned C57BL/6J mice to five groups: control, high-fat diet (HFD), and HFD with empagliflozin, dulaglutide, or both. Mice received a 12-week HFD, empagliflozin (5 days/week, oral gavage), and dulaglutide (once weekly, intraperitoneally). Both drugs significantly attenuated HFD-induced weight increase, abnormal glucose metabolism, and abnormal serum levels of leptin and insulin, and co-treatment was more effective. Both drugs significantly alleviated HFD-induced AHR, increased macrophages in bronchoalveolar lavage fluid (BALF), and co-treatment was more effective on AHR. HFD-induced lung fibrosis was decreased by both drugs alone and combined. HFD induced interleukin (IL)-17, transforming growth factor (TGF)- β1, and IL-1 β mRNA and protein expression, which was significantly reduced by empagliflozin, dulaglutide, and their combination. Tumour necrosis factor (TNF)- α and IL-6 showed similar patterns without significant differences. HFD-enhanced T helper (Th) 1 and Th17 cell differentiation was improved by both drugs. Empagliflozin and dulaglutide could be a promising therapy for obesity-induced asthma and showed additive effects in combination.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation.

          Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity and asthma: an inflammatory disease of adipose tissue not the airway.

            Obesity is a major risk factor for asthma; the reasons for this are poorly understood, although it is thought that inflammatory changes in adipose tissue in obesity could contribute to airway inflammation and airway reactivity in individuals who are obese. To determine if inflammation in adipose tissue in obesity is related to late-onset asthma, and associated with increased markers of airway inflammation and reactivity. We recruited a cohort of obese women with asthma and obese control women. We followed subjects with asthma for 12 months after bariatric surgery. We compared markers in adipose tissue and the airway from subjects with asthma and control subjects, and changes in subjects with asthma over time. Subjects with asthma had increased macrophage infiltration of visceral adipose tissue (P < 0.01), with increased expression of leptin (P < 0.01) and decreased adiponectin (p < 0.001) when controlled for body mass index. Similar trends were observed in subcutaneous adipose tissue. Airway epithelial cells expressed receptors for leptin and adiponectin, and airway reactivity was significantly related to visceral fat leptin expression (rho = -0.8; P < 0.01). Bronchoalveolar lavage cytokines and cytokine production from alveolar macrophages were similar in subjects with asthma and control subjects at baseline, and tended to increase 12 months after surgery. Obesity is associated with increased markers of inflammation in serum and adipose tissue, and yet decreased airway inflammation in obese people with asthma; these patterns reverse with bariatric surgery. Leptin and other adipokines may be important mediators of airway disease in obesity through direct effects on the airway rather than by enhancing airway inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Renoprotective effects of sodium-glucose cotransporter-2 inhibitors

              Over the past two years, our understanding of anti-hyperglycemic medications used to treat patients with type 2 diabetes (T2D) has fundamentally changed. Before the EMPA-REG OUTCOME trial, agents used to lower blood glucose were felt to prevent or delay the development of microvascular complications, but were not known to definitively reduce cardiovascular risk or mortality. Previous studies with then novel sodium-glucose cotransport-2 (SGLT2) inhibitors demonstrated improvements in several cardiovascular and renal risk factors, including HbA1c, blood pressure, weight, renal hyperfiltration, and albuminuria. However, as with other antihyperglycemic drugs, it could not be known if these salutary effects would translate into improved cardiorenal outcomes. In the EMPA-REG OUTCOME trial, SGLT2 inhibition with empagliflozin reduced the primary outcome of major adverse cardiovascular events (MACE), while also reducing mortality, hospitalization for heart failure, and progression of diabetic kidney disease. In the CANVAS Program trials using canagliflozin, the rates of the 3-point MACE endpoint, the risk of heart failure and the renal composite endpoint were also reduced, albeit with an increased risk of lower extremity amputation and fracture. As a result, clinical practice guidelines recommend the consideration of SGLT2 inhibition in high-risk patient subgroups for cardiovascular risk reduction. Ongoing primary renal endpoint trials will inform the cardio-metabolic-renal community about how to optimally treat patients with chronic kidney disease - including those with and without diabetes. Our aim is to review the rationale for renal protection with SGLT2 inhibitors, and their current place in the clinical management of patients with kidney disease.
                Bookmark

                Author and article information

                Contributors
                parkjw@yuhs.ac
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                30 October 2019
                30 October 2019
                2019
                : 9
                : 15601
                Affiliations
                [1 ]ISNI 0000 0004 0470 5454, GRID grid.15444.30, Department of Internal Medicine, Gangnam Severance Hospital, , Yonsei University College of Medicine, ; Seoul, Korea
                [2 ]ISNI 0000 0004 0470 5454, GRID grid.15444.30, Institute of Allergy, , Yonsei University College of Medicine, ; Seoul, Korea
                [3 ]ISNI 0000 0004 0470 5454, GRID grid.15444.30, Division of Allergy and Immunology, Department of Internal Medicine, , Yonsei University College of Medicine, ; Seoul, Korea
                Author information
                http://orcid.org/0000-0002-1862-1003
                http://orcid.org/0000-0003-0249-8749
                Article
                51648
                10.1038/s41598-019-51648-1
                6821734
                31666643
                732e0584-98da-4b2c-8478-f5269c88197c
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 January 2019
                : 26 September 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003725, National Research Foundation of Korea (NRF);
                Award ID: NRF-2016R1A2B4014288
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                asthma,preclinical research
                Uncategorized
                asthma, preclinical research

                Comments

                Comment on this article

                scite_

                Similar content1,310

                Cited by18

                Most referenced authors400