• Record: found
  • Abstract: found
  • Article: not found

Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.


genetics, Transcription, Genetic, Promoter Regions, Genetic, metabolism, cytology, Pluripotent Stem Cells, Mice, Methylation, Male, Histones, Genomic Imprinting, Genome, Gene Expression Regulation, Developmental, Fibroblasts, CpG Islands, Chromatin, Cell Lineage, Animals, Alleles

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations.

      Related collections

      Author and article information



      Comment on this article