291
views
0
recommends
+1 Recommend
0 collections
    24
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Notch receptor–ligand binding and activation: Insights from molecular studies

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          ► We review the high resolution structures of the Notch receptor and ligands. ► Highlight the docking events of Notch receptor and ligand at the cell surface. ► Indicate the future challenges in understanding Notch receptor–ligand interactions.

          Abstract

          The Notch receptor is part of a core signalling pathway which is highly conserved in all metazoan species. It is required for various cell fate decisions at multiple stages of development and in the adult organism, with dysregulation of the pathway associated with genetic and acquired diseases including cancer. Although cellular and in vivo studies have provided considerable insight into the downstream consequences of Notch signalling, relatively little is known about the molecular basis of the receptor/ligand interaction and initial stages of activation. Recent advances in structure determination of the extracellular regions of human Notch-1 and one of its ligands Jagged-1 have given new insights into docking events occurring at the cell surface which may facilitate the development of new highly specific therapies. We review the structural data available for receptor and ligands and identify the challenges ahead.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The canonical Notch signaling pathway: unfolding the activation mechanism.

          Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Therapeutic antibody targeting of individual Notch receptors.

            The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the gamma-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although gamma-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to differentiation and disease and reveal the therapeutic promise in targeting Notch1 and Notch2 independently.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The many facets of Notch ligands.

              The Notch signaling pathway regulates a diverse array of cell types and cellular processes and is tightly regulated by ligand binding. Both canonical and noncanonical Notch ligands have been identified that may account for some of the pleiotropic nature associated with Notch signaling. This review focuses on the molecular mechanisms by which Notch ligands function as signaling agonists and antagonists, and discusses different modes of activating ligands as well as findings that support intrinsic ligand signaling activity independent of Notch. Post-translational modification, proteolytic processing, endocytosis and membrane trafficking, as well as interactions with the actin cytoskeleton may contribute to the recently appreciated multifunctionality of Notch ligands. The regulation of Notch ligand expression by other signaling pathways provides a mechanism to coordinate Notch signaling with multiple cellular and developmental cues. The association of Notch ligands with inherited human disorders and cancer highlights the importance of understanding the molecular nature and activities intrinsic to Notch ligands. Oncogene (2008) 27, 5148-5167; doi:10.1038/onc.2008.229.
                Bookmark

                Author and article information

                Journal
                Semin Cell Dev Biol
                Semin. Cell Dev. Biol
                Seminars in Cell & Developmental Biology
                Academic Press
                1084-9521
                1096-3634
                June 2012
                June 2012
                : 23
                : 4
                : 421-428
                Affiliations
                [a ]Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
                [b ]Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
                Author notes
                [* ]Corresponding author. Tel.: +44 1865613256. penny.handford@ 123456bioch.ox.ac.uk
                Article
                YSCDB1290
                10.1016/j.semcdb.2012.01.009
                3415683
                22326375
                735adcaf-9982-453b-b61b-cfb3379654ba
                © 2012 Elsevier Ltd.

                This document may be redistributed and reused, subject to certain conditions.

                History
                Categories
                Review

                Developmental biology
                jagged,notch signalling,egf, epidermal growth factor,epidermal growth factor-like,notch,cis/trans,csl, cbf1/suppressor of hairless/lag1

                Comments

                Comment on this article