50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an external signal. The model provides the basis of an experimental method to determine the architecture of such pathways, and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ∼80% of the known relationships without any false positives.

          Author Summary

          Cells have evolved elaborate pathways that allow them to optimally use available nutrients, for example, and alter gene expression in response to external challenges. The mapping of these pathways provides an understanding of cell function critical for advancements in a number of fields, from biofuel production to drug discovery. In this study, we developed a novel method to map pathways of genes that function in the cellular response to a given signal or stress. The method represents a significant advancement since it takes full advantage of modern genomics techniques to provide novel, detailed information about gene function, including the contribution from different genes individually, and in combination with other genes or pathways. We tested the method on a pathway in yeast whose human equivalent is associated with a serious and potentially fatal hereditary disease called galactosemia. We demonstrate that the method allows a highly accurate reconstruction of this pathway, correctly segregating genes with major and minor functions, and recapitulating the known mechanisms associated with the disease.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The genetic landscape of a cell.

          A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple regression method for mapping quantitative trait loci in line crosses using flanking markers.

            The use of flanking marker methods has proved to be a powerful tool for the mapping of quantitative trait loci (QTL) in the segregating generations derived from crosses between inbred lines. Methods to analyse these data, based on maximum-likelihood, have been developed and provide good estimates of QTL effects in some situations. Maximum-likelihood methods are, however, relatively complex and can be computationally slow. In this paper we develop methods for mapping QTL based on multiple regression which can be applied using any general statistical package. We use the example of mapping in an F(2) population and show that these regression methods produce very similar results to those obtained using maximum likelihood. The relative simplicity of the regression methods means that models with more than a single QTL can be explored and we give examples of two lined loci and of two interacting loci. Other models, for example with more than two QTL, with environmental fixed effects, with between family variance or for threshold traits, could be fitted in a similar way. The ease, speed of application and generality of regression methods for flanking marker analysis, and the good estimates they obtain, suggest that they should provide the method of choice for the analysis of QTL mapping data from inbred line crosses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.

              Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                May 2011
                May 2011
                12 May 2011
                : 7
                : 5
                : e1002048
                Affiliations
                [1 ]Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
                [2 ]Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
                [3 ]Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
                [4 ]Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
                [5 ]Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
                [6 ]Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
                Duke University, United States of America
                Author notes

                Conceived and designed the experiments: HP TJP MK. Performed the experiments: HP KM LT. Analyzed the data: HP KM CB MK. Contributed reagents/materials/analysis tools: HP KM CB JP LT TJP MK. Wrote the paper: HP TJP MK. Conducted preliminary analyses of alternative inference methods: VA LY.

                Article
                PCOMPBIOL-D-10-00009
                10.1371/journal.pcbi.1002048
                3093353
                21589890
                7360bcf7-9ba4-497a-99bb-3ef4a1203c81
                Phenix et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 September 2010
                : 28 March 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Functional Genomics
                Molecular Genetics
                Gene Regulation
                Gene Expression
                Metabolic Networks
                Regulatory Networks
                Signaling Networks
                Systems Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article