34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Periodically driven ergodic and many-body localized quantum systems

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study dynamics of isolated quantum many-body systems under periodic driving. We consider a driving protocol in which the Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem in energy space. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We argue that our results hold for general driving protocols, and discuss their experimental implications.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Thermalization and its mechanism for generic isolated quantum systems

          Time dynamics of isolated many-body quantum systems has long been an elusive subject. Very recently, however, meaningful experimental studies of the problem have finally become possible, stimulating theoretical interest as well. Progress in this field is perhaps most urgently needed in the foundations of quantum statistical mechanics. This is so because in generic isolated systems, one expects nonequilibrium dynamics on its own to result in thermalization: a relaxation to states where the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable through the time-tested recipe of statistical mechanics. However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible, in a sense analogous to that in which dynamical chaos makes classical thermalization possible. For example, dynamical chaos itself cannot occur in an isolated quantum system, where time evolution is linear and the spectrum is discrete. Underscoring that new rules could apply in this case, some recent studies even suggested that statistical mechanics may give wrong predictions for the outcomes of relaxation in such systems. Here we demonstrate that an isolated generic quantum many-body system does in fact relax to a state well-described by the standard statistical mechanical prescription. Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation and that thermalization happens instead at the level of individual eigenstates, as first proposed by J.M. Deutsch and M. Srednicki. A striking consequence of this eigenstate thermalization scenario is that the knowledge of a single many-body eigenstate suffices to compute thermal averages-any eigenstate in the microcanonical energy window will do, as they all give the same result.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the exponential solution of differential equations for a linear operator

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states

              We consider low-temperature behavior of weakly interacting electrons in disordered conductors in the regime when all single-particle eigenstates are localized by the quenched disorder. We prove that in the absence of coupling of the electrons to any external bath dc electrical conductivity exactly vanishes as long as the temperatute \(T\) does not exceed some finite value \(T_c\). At the same time, it can be also proven that at high enough \(T\) the conductivity is finite. These two statements imply that the system undergoes a finite temperature Metal-to-Insulator transition, which can be viewed as Anderson-like localization of many-body wave functions in the Fock space. Metallic and insulating states are not different from each other by any spatial or discrete symmetries. We formulate the effective Hamiltonian description of the system at low energies (of the order of the level spacing in the single-particle localization volume). In the metallic phase quantum Boltzmann equation is valid, allowing to find the kinetic coefficients. In the insulating phase, \(T
                Bookmark

                Author and article information

                Journal
                2014-03-25
                2015-01-01
                Article
                10.1016/j.aop.2014.11.008
                1403.6480
                736a13a3-bd58-4bf7-a1ec-f89064393efa

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Annals of Physics 353, 196 (2015)
                15 pages, 4 figures
                cond-mat.dis-nn cond-mat.quant-gas cond-mat.stat-mech

                Condensed matter,Quantum gases & Cold atoms,Theoretical physics
                Condensed matter, Quantum gases & Cold atoms, Theoretical physics

                Comments

                Comment on this article