31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fibroblast Growth Factor Receptor 3 Is a Negative Regulator of Bone Growth

      , , , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endochondral ossification is a major mode of bone that occurs as chondrocytes undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. We have identified a role for fibroblast growth factor receptor 3 (FGFR-3) in this process by disrupting the murine Fgfr-3 gene to produce severe and progressive bone dysplasia with enhanced and prolonged endochondral bone growth. This growth is accompanied by expansion of proliferating and hypertrophic chondrocytes within the cartilaginous growth plate. Thus, FGFR-3 appears to regulate endochondral ossification by an essentially negative mechanism, limiting rather than promoting osteogenesis. In light of these mouse results, certain human disorders, such as achondroplasia, can be interpreted as gain-of-function mutations that activate the fundamentally negative growth control exerted by the FGFR-3 kinase.

          Related collections

          Author and article information

          Journal
          Cell
          Cell
          Elsevier BV
          00928674
          March 1996
          March 1996
          : 84
          : 6
          : 911-921
          Article
          10.1016/S0092-8674(00)81069-7
          8601314
          7372da24-118e-408e-8fd6-4b808ef54a26
          © 1996

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://www.elsevier.com/open-access/userlicense/1.0/

          History

          Comments

          Comment on this article