21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diatoms Green Nanotechnology for Biosilica-Based Drug Delivery Systems

      review-article
      1 , 2 , * , 1 , * , 1
      Pharmaceutics
      MDPI
      nanotechnology, diatom, biosilica, drug delivery, hybrid devices

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diatom microalgae are the most outstanding natural source of porous silica. The diatom cell is enclosed in a three-dimensional (3-D) ordered nanopatterned silica cell wall, called frustule. The unique properties of the diatom frustule, including high specific surface area, thermal stability, biocompatibility, and tailorable surface chemistry, make diatoms really promising for biomedical applications. Moreover, they are easy to cultivate in an artificial environment and there is a large availability of diatom frustules as fossil material (diatomite) in several areas of the world. For all these reasons, diatoms are an intriguing alternative to synthetic materials for the development of low-cost drug delivery systems. This review article focuses on the possible use of diatom-derived silica as drug carrier systems. The functionalization strategies of diatom micro/nanoparticles for improving their biophysical properties, such as cellular internalization and drug loading/release kinetics, are described. In addition, the realization of hybrid diatom-based devices with advanced properties for theranostics and targeted or augmented drug delivery applications is also discussed.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Mesoporous silica nanoparticles in biomedical applications.

          This tutorial review provides an outlook on nanomaterials that are currently being used for theranostic purposes, with a special focus on mesoporous silica nanoparticle (MSNP) based materials. MSNPs with large surface area and pore volume can serve as efficient carriers for various therapeutic agents. The functionalization of MSNPs with molecular, supramolecular or polymer moieties, provides the material with great versatility while performing drug delivery tasks, which makes the delivery process highly controllable. This emerging area at the interface of chemistry and the life sciences offers a broad palette of opportunities for researchers with interests ranging from sol-gel science, the fabrication of nanomaterials, supramolecular chemistry, controllable drug delivery and targeted theranostics in biology and medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesoporous materials for drug delivery.

            Research on mesoporous materials for biomedical purposes has experienced an outstanding increase during recent years. Since 2001, when MCM-41 was first proposed as drug-delivery system, silica-based materials, such as SBA-15 or MCM-48, and some metal-organic frameworks have been discussed as drug carriers and controlled-release systems. Mesoporous materials are intended for both systemic-delivery systems and implantable local-delivery devices. The latter application provides very promising possibilities in the field of bone-tissue repair because of the excellent behavior of these materials as bioceramics. This Minireview deals with the advances in this field by the control of the textural parameters, surface functionalization, and the synthesis of sophisticated stimuli-response systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogel nanoparticles in drug delivery.

              Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.
                Bookmark

                Author and article information

                Journal
                Pharmaceutics
                Pharmaceutics
                pharmaceutics
                Pharmaceutics
                MDPI
                1999-4923
                20 November 2018
                December 2018
                : 10
                : 4
                : 242
                Affiliations
                [1 ]Institute for Microelectronics and Microsystems, Via P. Castellino 111, 80131 Naples, Italy; ilaria.rea@ 123456na.imm.cnr.it
                [2 ]Materias S.r.l., Corso N. Protopisani 50, 80146 Naples, Italy
                Author notes
                [* ]Correspondence: monica.terracciano@ 123456na.imm.cnr.it (M.T.); luca.destefano@ 123456na.imm.cnr.it (L.D.S.); Tel.: +39-081-6132-490 (M.T.); +39-081-6132-375 (L.D.S.)
                Author information
                https://orcid.org/0000-0001-6367-2419
                Article
                pharmaceutics-10-00242
                10.3390/pharmaceutics10040242
                6321530
                30463290
                737426c4-956b-4ed0-a915-7aa9c67ec950
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 October 2018
                : 15 November 2018
                Categories
                Review

                nanotechnology,diatom,biosilica,drug delivery,hybrid devices

                Comments

                Comment on this article