96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Free radicals, natural antioxidants, and their reaction mechanisms

      ,
      RSC Adv.
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The normal biochemical reactions in our body, increased exposure to the environment, and higher levels of dietary xenobiotic's result in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS).

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids as antioxidants.

          Flavonoids are phenolic substances isolated from a wide range of vascular plants, with over 8000 individual compounds known. They act in plants as antioxidants, antimicrobials, photoreceptors, visual attractors, feeding repellants, and for light screening. Many studies have suggested that flavonoids exhibit biological activities, including antiallergenic, antiviral, antiinflammatory, and vasodilating actions. However, most interest has been devoted to the antioxidant activity of flavonoids, which is due to their ability to reduce free radical formation and to scavenge free radicals. The capacity of flavonoids to act as antioxidants in vitro has been the subject of several studies in the past years, and important structure-activity relationships of the antioxidant activity have been established. The antioxidant efficacy of flavonoids in vivo is less documented, presumably because of the limited knowledge on their uptake in humans. Most ingested flavonoids are extensively degraded to various phenolic acids, some of which still possess a radical-scavenging ability. Both the absorbed flavonoids and their metabolites may display an in vivo antioxidant activity, which is evidenced experimentally by the increase of the plasma antioxidant status, the sparing effect on vitamin E of erythrocyte membranes and low-density lipoproteins, and the preservation of erythrocyte membrane polyunsaturated fatty acids. This review presents the current knowledge on structural aspects and in vitro antioxidant capacity of most common flavonoids as well as in vivo antioxidant activity and effects on endogenous antioxidants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chemical studies of anthocyanins: A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements.

              A cellular antioxidant activity (CAA) assay for quantifying the antioxidant activity of phytochemicals, food extracts, and dietary supplements has been developed. Dichlorofluorescin is a probe that is trapped within cells and is easily oxidized to fluorescent dichlorofluorescein (DCF). The method measures the ability of compounds to prevent the formation of DCF by 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP)-generated peroxyl radicals in human hepatocarcinoma HepG2 cells. The decrease in cellular fluorescence when compared to the control cells indicates the antioxidant capacity of the compounds. The antioxidant activities of selected phytochemicals and fruit extracts were evaluated using the CAA assay, and the results were expressed in micromoles of quercetin equivalents per 100 micromol of phytochemical or micromoles of quercetin equivalents per 100 g of fresh fruit. Quercetin had the highest CAA value, followed by kaempferol, epigallocatechin gallate (EGCG), myricetin, and luteolin among the pure compounds tested. Among the selected fruits tested, blueberry had the highest CAA value, followed by cranberry > apple = red grape > green grape. The CAA assay is a more biologically relevant method than the popular chemistry antioxidant activity assays because it accounts for some aspects of uptake, metabolism, and location of antioxidant compounds within cells.
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Adv.
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2015
                2015
                : 5
                : 35
                : 27986-28006
                Article
                10.1039/C4RA13315C
                73862d80-afdb-4bb5-8db1-53d8d56d3197
                © 2015
                History

                Comments

                Comment on this article