Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle : Daily muscle stretching and blood flow

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 50

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia.

          Vascular endothelial growth factor (VEGF), a potent angiogenic factor and endothelial cell-specific mitogen, is up-regulated by hypoxia. However, the mechanism(s) responsible for hypoxic induction of VEGF has not been clearly delineated. We report that the steady state VEGF mRNA levels are increased 12 +/- 0.6-fold, but the transcriptional rate for VEGF is increased only 3.1 +/- 0.6-fold by hypoxia in PC12 cells. In order to investigate cis-regulatory sequences which mediate this response to hypoxia, we cloned the rat genomic sequences encoding VEGF and identified a 28-base pair element in the 5' promoter that mediates hypoxia-inducible transcription in transient expression assays. This element has sequence and protein binding similarities to the hypoxia-inducible factor 1 binding site within the erythropoietin 3' enhancer. Post-transcriptional mechanisms have also been suggested to play a role in the hypoxic induction of VEGF. Evidence is provided that a frequently used polyadenylation site is 1.9 kilobases downstream from the translation termination codon for rat VEGF. This site is 1.5 kilobases further downstream from the polyadenylation site previously reported for VEGF. This new finding reveals sequence motifs in the 3'-untranslated region that may mediate VEGF mRNA stability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retrograde flow and shear rate acutely impair endothelial function in humans.

            Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24+/-3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in "dose"-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (P<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (P<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (P=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle.

              The effect of intense training on endothelial proliferation, capillary growth and distribution of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was examined in human skeletal muscle. Two intermittent knee extensor training protocols (at approximately 150% (Study 1) versus approximately 90% (Study 2) of leg (O(2) max)) were conducted. Muscle biopsies were obtained throughout the training periods for immunohistochemical assessment of capillarization, cell proliferation (Ki-67-positive cells), VEGF and bFGF. In Study 1, microdialysis samples were collected from the trained and untrained leg at rest and during exercise and added to endothelial cells to measure the proliferative effect. After 4 weeks of training there was a higher (P < 0.05) capillary-to-fibre ratio (Study 1: 2.4 +/- 0.1 versus 1.7 +/- 0.1) and number of Ki-67-positive cells (Study 1: 0.18 +/- 0.05 versus 0.00 +/- 0.01) than before training. Neither the location of proliferating endothelial cells nor capillarization was related to muscle fibre type. The endothelial cell proliferative effect of the muscle microdialysate increased from rest to exercise in both the untrained leg (from 262 +/- 60 to 573 +/- 87% of control perfusate) and the trained leg (from 303 +/- 75 to 415 +/- 108% of perfusate). VEGF and bFGF were localized in endothelial and skeletal muscle cells and training induced no changes in distribution. The results demonstrate that intense intermittent endurance training induces capillary growth and a transient proliferation of endothelial cells within 4 weeks, with a similar growth occurring around type I versus type II muscle fibres.
                Bookmark

                Author and article information

                Journal
                The Journal of Physiology
                J Physiol
                Wiley
                00223751
                April 05 2018
                Affiliations
                [1 ]Department of Biomedical Sciences, College of Medicine; Florida State University; Tallahassee FL USA
                [2 ]Department of Engineering Science; University of Electro-communications; Tokyo Japan
                [3 ]Department of Kinesiology; Kansas State University College of Human Ecology; Manhattan KS USA
                [4 ]Department of Nutrition, Food and Exercise Sciences, College of Human Sciences; Florida State University; Tallahassee FL USA
                [5 ]Department of Physiology and Functional Genomics, College of Medicine; University of Florida; Gainesville FL USA
                [6 ]Department of Applied Physiology and Kinesiology, College of Health and Human Performance; University of Florida; Gainesville FL USA
                Article
                10.1113/JP275459
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                Comments

                Comment on this article