14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cryo–electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B

      , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oligosaccharyltransferase (OST) catalyzes the transfer of a high-mannose glycan onto secretory proteins in the endoplasmic reticulum. Mammals express two distinct OST complexes that act in a cotranslational (OST-A) or posttranslocational (OST-B) manner. Here, we present high-resolution cryo–electron microscopy structures of human OST-A and OST-B. Although they have similar overall architectures, structural differences in the catalytic subunits STT3A and STT3B facilitate contacts to distinct OST subunits, DC2 in OST-A and MAGT1 in OST-B. In OST-A, interactions with TMEM258 and STT3A allow ribophorin-I to form a four-helix bundle that can bind to a translating ribosome, whereas the equivalent region is disordered in OST-B. We observed an acceptor peptide and dolichylphosphate bound to STT3B, but only dolichylphosphate in STT3A, suggesting distinct affinities of the two OST complexes for protein substrates.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Tricine-SDS-PAGE.

          Tricine-SDS-PAGE is commonly used to separate proteins in the mass range 1-100 kDa. It is the preferred electrophoretic system for the resolution of proteins smaller than 30 kDa. The concentrations of acrylamide used in the gels are lower than in other electrophoretic systems. These lower concentrations facilitate electroblotting, which is particularly crucial for hydrophobic proteins. Tricine-SDS-PAGE is also used preferentially for doubled SDS-PAGE (dSDS-PAGE), a proteomic tool used to isolate extremely hydrophobic proteins for mass spectrometric identification, and it offers advantages for resolution of the second dimension after blue-native PAGE (BN-PAGE) and clear-native PAGE (CN-PAGE). Here I describe a protocol for Tricine-SDS-PAGE, which includes efficient methods for Coomassie blue or silver staining and electroblotting, thereby increasing the versatility of the approach. This protocol can be completed in 1-2 d.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An evolving view of the eukaryotic oligosaccharyltransferase.

            Asparagine-linked glycosylation (ALG) is one of the most common protein modification reactions in eukaryotic cells, as many proteins that are translocated across or integrated into the rough endoplasmic reticulum (RER) carry N-linked oligosaccharides. Although the primary focus of this review will be the structure and function of the eukaryotic oligosaccharyltransferase (OST), key findings provided by the analysis of the archaebacterial and eubacterial OST homologues will be reviewed, particularly those that provide insight into the recognition of donor and acceptor substrates. Selection of the fully assembled donor substrate will be considered in the context of the family of human diseases known as congenital disorders of glycosylation (CDG). The yeast and vertebrate OST are surprisingly complex hetero-oligomeric proteins consisting of seven or eight subunits (Ost1p, Ost2p, Ost3p/Ost6p, Ost4p, Ost5p, Stt3p, Wbp1p, and Swp1p in yeast; ribophorin I, DAD1, N33/IAP, OST4, STT3A/STT3B, Ost48, and ribophorin II in mammals). Recent findings from several laboratories have provided overwhelming evidence that the STT3 subunit is critical for catalytic activity. Here, we will consider the evolution and assembly of the eukaryotic OST in light of recent genomic evidence concerning the subunit composition of the enzyme in diverse eukaryotes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              N-linked protein glycosylation in the endoplasmic reticulum.

              The attachment of glycans to asparagine residues of proteins is an abundant and highly conserved essential modification in eukaryotes. The N-glycosylation process includes two principal phases: the assembly of a lipid-linked oligosaccharide (LLO) and the transfer of the oligosaccharide to selected asparagine residues of polypeptide chains. Biosynthesis of the LLO takes place at both sides of the endoplasmic reticulum (ER) membrane and it involves a series of specific glycosyltransferases that catalyze the assembly of the branched oligosaccharide in a highly defined way. Oligosaccharyltransferase (OST) selects the Asn-X-Ser/Thr consensus sequence on polypeptide chains and generates the N-glycosidic linkage between the side-chain amide of asparagine and the oligosaccharide. This ER-localized pathway results in a systemic modification of the proteome, the basis for the Golgi-catalyzed modification of the N-linked glycans, generating the large diversity of N-glycoproteome in eukaryotic cells. This article focuses on the processes in the ER. Based on the highly conserved nature of this pathway we concentrate on the mechanisms in the eukaryotic model organism Saccharomyces cerevisiae.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                December 12 2019
                December 13 2019
                December 12 2019
                December 13 2019
                : 366
                : 6471
                : 1372-1375
                Article
                10.1126/science.aaz3505
                31831667
                738d6877-608c-40f0-9ff5-9246d05de65a
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article