1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      To be certain about the uncertainty: Bayesian statistics for 13 C metabolic flux analysis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood.

          Mathematical description of biological reaction networks by differential equations leads to large models whose parameters are calibrated in order to optimally explain experimental data. Often only parts of the model can be observed directly. Given a model that sufficiently describes the measured data, it is important to infer how well model parameters are determined by the amount and quality of experimental data. This knowledge is essential for further investigation of model predictions. For this reason a major topic in modeling is identifiability analysis. We suggest an approach that exploits the profile likelihood. It enables to detect structural non-identifiabilities, which manifest in functionally related model parameters. Furthermore, practical non-identifiabilities are detected, that might arise due to limited amount and quality of experimental data. Last but not least confidence intervals can be derived. The results are easy to interpret and can be used for experimental planning and for model reduction. An implementation is freely available for MATLAB and the PottersWheel modeling toolbox at http://web.me.com/andreas.raue/profile/software.html. Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Bayesian Theory

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions.

              Metabolic flux analysis (MFA) has emerged as a tool of great significance for metabolic engineering and mammalian physiology. An important limitation of MFA, as carried out via stable isotope labeling and GC/MS and nuclear magnetic resonance (NMR) measurements, is the large number of isotopomer or cumomer equations that need to be solved, especially when multiple isotopic tracers are used for the labeling of the system. This restriction reduces the ability of MFA to fully utilize the power of multiple isotopic tracers in elucidating the physiology of realistic situations comprising complex bioreaction networks. Here, we present a novel framework for the modeling of isotopic labeling systems that significantly reduces the number of system variables without any loss of information. The elementary metabolite unit (EMU) framework is based on a highly efficient decomposition method that identifies the minimum amount of information needed to simulate isotopic labeling within a reaction network using the knowledge of atomic transitions occurring in the network reactions. The functional units generated by the decomposition algorithm, called EMUs, form the new basis for generating system equations that describe the relationship between fluxes and stable isotope measurements. Isotopomer abundances simulated using the EMU framework are identical to those obtained using the isotopomer and cumomer methods, however, require significantly less computation time. For a typical (13)C-labeling system the total number of equations that needs to be solved is reduced by one order-of-magnitude (100s EMUs vs. 1000s isotopomers). As such, the EMU framework is most efficient for the analysis of labeling by multiple isotopic tracers. For example, analysis of the gluconeogenesis pathway with (2)H, (13)C, and (18)O tracers requires only 354 EMUs, compared to more than two million isotopomers.
                Bookmark

                Author and article information

                Journal
                Biotechnology and Bioengineering
                Biotechnol. Bioeng.
                Wiley
                00063592
                November 2017
                November 2017
                August 23 2017
                : 114
                : 11
                : 2668-2684
                Affiliations
                [1 ]Forschungszentrum Jülich GmbH, Institute of Bio- und Geosciences; IBG-1: Biotechnology; Jülich Germany
                [2 ]Computational Systems Biotechnology (AVT.CSB); RWTH Aachen University; Aachen Germany
                Article
                10.1002/bit.26379
                28695999
                7399d23b-b4a7-48d6-b62c-5b21763a8736
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article