17
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Call for Papers: Digital Platforms and Artificial Intelligence in Dementia

      Submit here by August 31, 2025

      About Dementia and Geriatric Cognitive Disorders: 2.2 Impact Factor I 4.7 CiteScore I 0.809 Scimago Journal & Country Rank (SJR)

      Call for Papers: Epidemiology of CKD and its Complications

      Submit here by August 31, 2024

      About Kidney and Blood Pressure Research: 2.3 Impact Factor I 4.8 CiteScore I 0.674 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Magnetic Resonance Imaging in Atherosclerotic Renal Artery Stenosis: The Update and Future Directions from Interventional Perspective

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Atherosclerotic renal artery stenosis (ARAS) is a condition where the renal arteries become narrowed due to atherosclerosis, leading to reduced blood flow to the kidneys and various renal complications. The effectiveness of interventional treatments, such as renal artery angioplasty and stenting, remains debated, making patient selection for these procedures challenging.

          Summary

          This review focuses on the diagnosis and management of ARAS, with a particular emphasis on the potential role of functional magnetic resonance imaging (MRI) in evaluating renal function and mechanisms. By summarizing current diagnostic approaches and outcomes of interventional treatments, the review highlights the importance of informed clinical decision-making in ARAS management. Functional MRI emerges as a promising noninvasive tool to assess renal function, aiding in patient stratification and treatment planning.

          Key Messages

          The efficacy of interventional treatments for ARAS requires further investigation and careful patient selection. Functional MRI holds promise as a noninvasive means to assess renal function and mechanisms, potentially guiding more effective clinical decisions in ARAS management. Advancing research in diagnostic methods, particularly functional MRI, can enhance our understanding and improve the treatment outcomes for ARAS patients.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.

          Molecular diffusion and microcirculation in the capillary network result in a distribution of phases in a single voxel in the presence of magnetic field gradients. This distribution produces a spin-echo attenuation. The authors have developed a magnetic resonance (MR) method to image such intravoxel incoherent motions (IVIMs) by using appropriate gradient pulses. Images were generated at 0.5 T in a high-resolution, multisection mode. Diffusion coefficients measured on images of water and acetone phantoms were consistent with published values. Images obtained in the neurologic area from healthy subjects and patients were analyzed in terms of an apparent diffusion coefficient (ADC) incorporating the effect of all IVIMs. Differences were found between various normal and pathologic tissues. The ADC of in vivo water differed from the diffusion coefficient of pure water. Results were assessed in relation to water compartmentation in biologic tissues (restricted diffusion) and tissue perfusion. Nonuniform slow flow of cerebrospinal fluid appeared as a useful feature on IVIM images. Observation of these motions may significantly extend the diagnostic capabilities of MR imaging.
            • Record: found
            • Abstract: found
            • Article: not found

            Revascularization versus medical therapy for renal-artery stenosis.

            Percutaneous revascularization of the renal arteries improves patency in atherosclerotic renovascular disease, yet evidence of a clinical benefit is limited. In a randomized, unblinded trial, we assigned 806 patients with atherosclerotic renovascular disease either to undergo revascularization in addition to receiving medical therapy or to receive medical therapy alone. The primary outcome was renal function, as measured by the reciprocal of the serum creatinine level (a measure that has a linear relationship with creatinine clearance). Secondary outcomes were blood pressure, the time to renal and major cardiovascular events, and mortality. The median follow-up was 34 months. During a 5-year period, the rate of progression of renal impairment (as shown by the slope of the reciprocal of the serum creatinine level) was -0.07x10(-3) liters per micromole per year in the revascularization group, as compared with -0.13x10(-3) liters per micromole per year in the medical-therapy group, a difference favoring revascularization of 0.06x10(-3) liters per micromole per year (95% confidence interval [CI], -0.002 to 0.13; P=0.06). Over the same time, the mean serum creatinine level was 1.6 micromol per liter (95% CI, -8.4 to 5.2 [0.02 mg per deciliter; 95% CI, -0.10 to 0.06]) lower in the revascularization group than in the medical-therapy group. There was no significant between-group difference in systolic blood pressure; the decrease in diastolic blood pressure was smaller in the revascularization group than in the medical-therapy group. The two study groups had similar rates of renal events (hazard ratio in the revascularization group, 0.97; 95% CI, 0.67 to 1.40; P=0.88), major cardiovascular events (hazard ratio, 0.94; 95% CI, 0.75 to 1.19; P=0.61), and death (hazard ratio, 0.90; 95% CI, 0.69 to 1.18; P=0.46). Serious complications associated with revascularization occurred in 23 patients, including 2 deaths and 3 amputations of toes or limbs. We found substantial risks but no evidence of a worthwhile clinical benefit from revascularization in patients with atherosclerotic renovascular disease. (Current Controlled Trials number, ISRCTN59586944.) 2009 Massachusetts Medical Society
              • Record: found
              • Abstract: found
              • Article: found

              Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications

              Arterial spin labeling (ASL) is a magnetic resonance (MR) imaging technique used to assess cerebral blood flow noninvasively by magnetically labeling inflowing blood. In this article, the main labeling techniques, notably pulsed and pseudocontinuous ASL, as well as emerging clinical applications will be reviewed. In dementia, the pattern of hypoperfusion on ASL images closely matches the established patterns of hypometabolism on fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) images due to the close coupling of perfusion and metabolism in the brain. This suggests that ASL might be considered as an alternative for FDG, reserving PET to be used for the molecular disease-specific amyloid and tau tracers. In stroke, ASL can be used to assess perfusion alterations both in the acute and the chronic phase. In arteriovenous malformations and dural arteriovenous fistulas, ASL is very sensitive to detect even small degrees of shunting. In epilepsy, ASL can be used to assess the epileptogenic focus, both in peri- and interictal period. In neoplasms, ASL is of particular interest in cases in which gadolinium-based perfusion is contraindicated (eg, allergy, renal impairment) and holds promise in differentiating tumor progression from benign causes of enhancement. Finally, various neurologic and psychiatric diseases including mild traumatic brain injury or posttraumatic stress disorder display alterations on ASL images in the absence of visualized structural changes. In the final part, current limitations and future developments of ASL techniques to improve clinical applicability, such as multiple inversion time ASL sequences to assess alterations of transit time, reproducibility and quantification of cerebral blood flow, and to measure cerebrovascular reserve, will be reviewed. (©) RSNA, 2016 Online supplemental material is available for this article.

                Author and article information

                Journal
                Kidney Dis (Basel)
                Kidney Dis (Basel)
                KDD
                KDD
                Kidney Diseases
                S. Karger AG (Basel, Switzerland )
                2296-9381
                2296-9357
                30 October 2023
                February 2024
                : 10
                : 1
                : 23-31
                Affiliations
                [a ]Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
                [b ]Department of Radiology, Peking University First Hospital, Beijing, China
                Author notes
                Correspondence to: Ying-Hua Zou, yinghzou@ 123456139.com
                Article
                534499
                10.1159/000534499
                10843188
                38322626
                739f9487-d129-4031-9dc9-47b9891db27b
                © 2023 The Author(s). Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC) ( http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes requires written permission.

                History
                : 10 January 2023
                : 23 August 2023
                : 2024
                Page count
                Figures: 2, References: 66, Pages: 9
                Funding
                The authors declare that no funding was received for the research and preparation of data or manuscript for this study.
                Categories
                Review Article

                atherosclerosis,renal artery stenosis,endovascular treatment,magnetic resonance imaging

                Comments

                Comment on this article

                Related Documents Log