19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non contiguous-finished genome sequence and description of Microbacterium gorillae sp. nov.

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Strain G3 T (CSUR P207 = DSM 26203) was isolated from the fecal sample of a wild gorilla ( Gorilla gorilla subsp gorilla) from Cameroon. It is a Gram-positive, facultative anaerobic short rod. This strain exhibits a 16S rRNA sequence similarity of 98.2 % with Microbacterium thalassium, the closest validly published Microbacterium species and member of the family Microbacteriaceae. Moreover, it shows a low MALDI-TOF-MS score (1.1 to 1.3) that does not allow any identification. Thus, it is likely that this strain represents a new species. Here we describe the phenotypic features of this organism, the complete genome sequence and annotation. The 3,692,770 bp long genome (one chromosome but no plasmid) contains 3,505 protein-coding and 61 RNA genes, including 4 rRNA genes. In addition, digital DNA-DNA hybridization values for the genome of the strain G3 T against the closest Microbacterium genomes range between 19.7 to 20.5, once again confirming its new status as a new species. On the basis of these polyphasic data, consisting of phenotypic and genomic analyses, we propose the creation of Microbacterium gorillae sp. nov . that contains the strain G3 T.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s40793-016-0152-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

            Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The minimum information about a genome sequence (MIGS) specification.

              With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.
                Bookmark

                Author and article information

                Contributors
                fadi.bittar@univ-amu.fr
                Journal
                Stand Genomic Sci
                Stand Genomic Sci
                Standards in Genomic Sciences
                BioMed Central (London )
                1944-3277
                14 April 2016
                14 April 2016
                2016
                : 11
                : 32
                Affiliations
                [ ]Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
                [ ]King Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
                Article
                152
                10.1186/s40793-016-0152-z
                4832456
                27087892
                73a7f036-0a6d-46bb-997b-bd6352e77cfe
                © Hadjadj et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 June 2015
                : 8 April 2016
                Categories
                Extended Genome Report
                Custom metadata
                © The Author(s) 2016

                Genetics
                microbacterium gorillae,genome,culturomics,taxonomo-genomics,gorilla stool sample
                Genetics
                microbacterium gorillae, genome, culturomics, taxonomo-genomics, gorilla stool sample

                Comments

                Comment on this article