133
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Codon usage: Nature's roadmap to expression and folding of proteins

      review-article
      Biotechnology Journal
      WILEY-VCH Verlag
      Codon usage, Protein folding, Translation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biomedical and biotechnological research relies on processes leading to the successful expression and production of key biological products. High-quality proteins are required for many purposes, including protein structural and functional studies. Protein expression is the culmination of multistep processes involving regulation at the level of transcription, mRNA turnover, protein translation, and post-translational modifications leading to the formation of a stable product. Although significant strides have been achieved over the past decade, advances toward integrating genomic and proteomic information are essential, and until such time, many target genes and their products may not be fully realized. Thus, the focus of this review is to provide some experimental support and a brief overview of how codon usage bias has evolved relative to regulating gene expression levels.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications.

          P. Sharp, W Li (1987)
          A simple, effective measure of synonymous codon usage bias, the Codon Adaptation Index, is detailed. The index uses a reference set of highly expressed genes from a species to assess the relative merits of each codon, and a score for a gene is calculated from the frequency of use of all codons in that gene. The index assesses the extent to which selection has been effective in moulding the pattern of codon usage. In that respect it is useful for predicting the level of expression of a gene, for assessing the adaptation of viral genes to their hosts, and for making comparisons of codon usage in different organisms. The index may also give an approximate indication of the likely success of heterologous gene expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            JCat: a novel tool to adapt codon usage of a target gene to its potential expression host

            A novel method for the adaptation of target gene codon usage to most sequenced prokaryotes and selected eukaryotic gene expression hosts was developed to improve heterologous protein production. In contrast to existing tools, JCat (Java Codon Adaptation Tool) does not require the manual definition of highly expressed genes and is, therefore, a very rapid and easy method. Further options of JCat for codon adaptation include the avoidance of unwanted cleavage sites for restriction enzymes and Rho-independent transcription terminators. The output of JCat is both graphically and as Codon Adaptation Index (CAI) values given for the pasted sequence and the newly adapted sequence. Additionally, a list of genes in FASTA-format can be uploaded to calculate CAI values. In one example, all genes of the genome of Caenorhabditis elegans were adapted to Escherichia coli codon usage and further optimized to avoid commonly used restriction sites. In a second example, the Pseudomonas aeruginosa exbD gene codon usage was adapted to E.coli codon usage with parallel avoidance of the same restriction sites. For both, the degree of introduced changes was documented and evaluated. JCat is integrated into the PRODORIC database that hosts all required information on the various organisms to fulfill the requested calculations. JCat is freely accessible at .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Codon usage and tRNA content in unicellular and multicellular organisms.

              T Ikemura (1985)
              Choices of synonymous codons in unicellular organisms are here reviewed, and differences in synonymous codon usages between Escherichia coli and the yeast Saccharomyces cerevisiae are attributed to differences in the actual populations of isoaccepting tRNAs. There exists a strong positive correlation between codon usage and tRNA content in both organisms, and the extent of this correlation relates to the protein production levels of individual genes. Codon-choice patterns are believed to have been well conserved during the course of evolution. Examination of silent substitutions and tRNA populations in Enterobacteriaceae revealed that the evolutionary constraint imposed by tRNA content on codon usage decelerated rather than accelerated the silent-substitution rate, at least insofar as pairs of taxonomically related organisms were examined. Codon-choice patterns of multicellular organisms are briefly reviewed, and diversity in G+C percentage at the third position of codons in vertebrate genes--as well as a possible causative factor in the production of this diversity--is discussed.
                Bookmark

                Author and article information

                Journal
                Biotechnol J
                biot
                Biotechnology Journal
                WILEY-VCH Verlag
                1860-6768
                1860-7314
                June 2011
                : 6
                : 6
                : 650-659
                Affiliations
                simpleDivision of Malaria Vaccine Development, Walter Reed Army Institute of Research Silver Spring, MD, USA
                Author notes
                Dr. Evelina Angov, Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA E-mail: Evelina.angov@ 123456us.army.mil
                Article
                10.1002/biot.201000332
                3166658
                21567958
                73ad5024-0467-4274-8f40-28ee7c6306a4
                Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 11 January 2011
                : 11 April 2011
                : 13 April 2011
                Categories
                Review

                Biotechnology
                codon usage,translation,protein folding
                Biotechnology
                codon usage, translation, protein folding

                Comments

                Comment on this article