4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bringing Lunar LiDAR Back Down to Earth: Mapping Our Industrial Heritage through Deep Transfer Learning

      , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article presents a novel deep learning method for semi-automated detection of historic mining pits using aerial LiDAR data. The recent emergence of national scale remotely sensed datasets has created the potential to greatly increase the rate of analysis and recording of cultural heritage sites. However, the time and resources required to process these datasets in traditional desktop surveys presents a near insurmountable challenge. The use of artificial intelligence to carry out preliminary processing of vast areas could enable experts to prioritize their prospection focus; however, success so far has been hindered by the lack of large training datasets in this field. This study develops an innovative transfer learning approach, utilizing a deep convolutional neural network initially trained on Lunar LiDAR datasets and reapplied here in an archaeological context. Recall rates of 80% and 83% were obtained on the 0.5 m and 0.25 m resolution datasets respectively, with false positive rates maintained below 20%. These results are state of the art and demonstrate that this model is an efficient, effective tool for semi-automated object detection for this type of archaeological objects. Further tests indicated strong potential for detection of other types of archaeological objects when trained accordingly.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Gradient-based learning applied to document recognition

            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            U-Net: Convolutional Networks for Biomedical Image Segmentation

              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              Microsoft COCO: Common Objects in Context

                Bookmark

                Author and article information

                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                September 2019
                August 23 2019
                : 11
                : 17
                : 1994
                Article
                10.3390/rs11171994
                73b12663-4b25-458e-9ca4-87605f9ac7b2
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article