7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SARS–CoV-2 Immuno-Pathogenesis and Potential for Diverse Vaccines and Therapies: Opportunities and Challenges

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel coronavirus that emerged from Wuhan, China in late 2019 causing coronavirus disease-19 (COVID-19). SARS-CoV-2 infection begins by attaching to angiotensin-converting enzyme 2 receptor (ACE2) via the spike glycoprotein, followed by cleavage by TMPRSS2, revealing the viral fusion domain. Other presumptive receptors for SARS-CoV-2 attachment include CD147, neuropilin-1 (NRP1), and Myeloid C-lectin like receptor (CLR), each of which might play a role in the systemic viral spread. The pathology of SARS-CoV-2 infection ranges from asymptomatic to severe acute respiratory distress syndrome, often displaying a cytokine storm syndrome, which can be life-threatening. Despite progress made, the detailed mechanisms underlying SARS-CoV-2 interaction with the host immune system remain unclear and are an area of very active research. The process’s key players include viral non-structural proteins and open reading frame products, which have been implicated in immune antagonism. The dysregulation of the innate immune system results in reduced adaptive immune responses characterized by rapidly diminishing antibody titers. Several treatment options for COVID-19 are emerging, with immunotherapies, peptide therapies, and nucleic acid vaccines showing promise. This review discusses the advances in the immunopathology of SARS-CoV-2, vaccines and therapies under investigation to counter the effects of this virus, as well as viral variants.

          Related collections

          Most cited references176

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

            Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dysregulation of immune response in patients with COVID-19 in Wuhan, China

              Abstract Background In December 2019, coronavirus disease 2019 (COVID-19) emerged in Wuhan and rapidly spread throughout China. Methods Demographic and clinical data of all confirmed cases with COVID-19 on admission at Tongji Hospital from January 10 to February 12, 2020, were collected and analyzed. The data of laboratory examinations, including peripheral lymphocyte subsets, were analyzed and compared between severe and non-severe patients. Results Of the 452 patients with COVID-19 recruited, 286 were diagnosed as severe infection. The median age was 58 years and 235 were male. The most common symptoms were fever, shortness of breath, expectoration, fatigue, dry cough and myalgia. Severe cases tend to have lower lymphocytes counts, higher leukocytes counts and neutrophil-lymphocyte-ratio (NLR), as well as lower percentages of monocytes, eosinophils, and basophils. Most of severe cases demonstrated elevated levels of infection-related biomarkers and inflammatory cytokines. The number of T cells significantly decreased, and more hampered in severe cases. Both helper T cells and suppressor T cells in patients with COVID-19 were below normal levels, and lower level of helper T cells in severe group. The percentage of naïve helper T cells increased and memory helper T cells decreased in severe cases. Patients with COVID-19 also have lower level of regulatory T cells, and more obviously damaged in severe cases. Conclusions The novel coronavirus might mainly act on lymphocytes, especially T lymphocytes. Surveillance of NLR and lymphocyte subsets is helpful in the early screening of critical illness, diagnosis and treatment of COVID-19.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Infect Dis Rep
                Infect Dis Rep
                idr
                Infectious Disease Reports
                MDPI
                2036-7430
                2036-7449
                04 February 2021
                March 2021
                : 13
                : 1
                : 102-125
                Affiliations
                [1 ]Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; armcgill@ 123456usf.edu (A.R.M.); roukiah@ 123456usf.edu (R.K.); rinku@ 123456usf.edu (R.D.); rjgreen@ 123456usf.edu (R.G.); mhowell1@ 123456usf.edu (M.H.)
                [2 ]Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
                [3 ]Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
                [4 ]Pharmacy Graduate Programs, Taneja College, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
                Author notes
                [* ]Correspondence: smohapa2@ 123456usf.edu (S.M.); smohapat@ 123456usf.edu (S.S.M.)
                Author information
                https://orcid.org/0000-0001-5838-0681
                Article
                idr-13-00013
                10.3390/idr13010013
                7931091
                33557330
                73b6b4cc-80a4-4920-ac18-0591b1767242
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 January 2021
                : 29 January 2021
                Categories
                Review

                sars-cov-2,covid-19,immunopathogenesis,therapeutics,vaccines

                Comments

                Comment on this article