40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Natural Polymeric Scaffolds in Bone Regeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite considerable advances in microsurgical techniques over the past decades, bone tissue remains a challenging arena to obtain a satisfying functional and structural restoration after damage. Through the production of substituting materials mimicking the physical and biological properties of the healthy tissue, tissue engineering strategies address an urgent clinical need for therapeutic alternatives to bone autografts. By virtue of their structural versatility, polymers have a predominant role in generating the biodegradable matrices that hold the cells in situ to sustain the growth of new tissue until integration into the transplantation area (i.e., scaffolds). As compared to synthetic ones, polymers of natural origin generally present superior biocompatibility and bioactivity. Their assembly and further engineering give rise to a wide plethora of advanced supporting materials, accounting for systems based on hydrogels or scaffolds with either fibrous or porous architecture. The present review offers an overview of the various types of natural polymers currently adopted in bone tissue engineering, describing their manufacturing techniques and procedures of functionalization with active biomolecules, and listing the advantages and disadvantages in their respective use in order to critically compare their actual applicability potential. Their combination to other classes of materials (such as micro and nanomaterials) and other innovative strategies to reproduce physiological bone microenvironments in a more faithful way are also illustrated. The regeneration outcomes achieved in vitro and in vivo when the scaffolds are enriched with different cell types, as well as the preliminary clinical applications are presented, before the prospects in this research field are finally discussed. The collection of studies herein considered confirms that advances in natural polymer research will be determinant in designing translatable materials for efficient tissue regeneration with forthcoming impact expected in the treatment of bone defects.

          Related collections

          Most cited references271

          • Record: found
          • Abstract: not found
          • Article: not found

          Biodegradable polymers as biomaterials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Normal bone anatomy and physiology.

            This review describes normal bone anatomy and physiology as an introduction to the subsequent articles in this section that discuss clinical applications of iliac crest bone biopsy. The normal anatomy and functions of the skeleton are reviewed first, followed by a general description of the processes of bone modeling and remodeling. The bone remodeling process regulates the gain and loss of bone mineral density in the adult skeleton and directly influences bone strength. Thorough understanding of the bone remodeling process is critical to appreciation of the value of and interpretation of the results of iliac crest bone histomorphometry. Osteoclast recruitment, activation, and bone resorption is discussed in some detail, followed by a review of osteoblast recruitment and the process of new bone formation. Next, the collagenous and noncollagenous protein components and function of bone extracellular matrix are summarized, followed by a description of the process of mineralization of newly formed bone matrix. The actions of biomechanical forces on bone are sensed by the osteocyte syncytium within bone via the canalicular network and intercellular gap junctions. Finally, concepts regarding bone remodeling, osteoclast and osteoblast function, extracellular matrix, matrix mineralization, and osteocyte function are synthesized in a summary of the currently understood functional determinants of bone strength. This information lays the groundwork for understanding the utility and clinical applications of iliac crest bone biopsy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bone substitutes: an update.

              Autograft is considered ideal for grafting procedures, providing osteoinductive growth factors, osteogenic cells, and an osteoconductive scaffold. Limitations, however, exist regarding donor site morbidity and graft availability. Allograft on the other hand, posses the risk of disease transmission. Synthetic graft substitutes lack osteoinductive or osteogenic properties. Composite grafts combine scaffolding properties with biological elements to stimulate cell proliferation and differentiation and eventually osteogenesis. We present here an overview of bone grafts and graft substitutes available for clinical applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                21 May 2020
                2020
                : 8
                : 474
                Affiliations
                [1] 1Department of Biomedical Engineering, University of Basel , Basel, Switzerland
                [2] 2Department of Biomedicine, University Hospital Basel, University of Basel , Basel, Switzerland
                Author notes

                Edited by: Chiara Tonda-Turo, Politecnico di Torino, Italy

                Reviewed by: Elena Jones, University of Leeds, United Kingdom; Francesco Baino, Politecnico di Torino, Italy

                *Correspondence: Arnaud Scherberich arnaud.scherberich@ 123456usb.ch

                This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2020.00474
                7253672
                32509754
                73b82ddf-8dd8-4ebf-914d-7c163a897c12
                Copyright © 2020 Filippi, Born, Chaaban and Scherberich.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 February 2020
                : 23 April 2020
                Page count
                Figures: 4, Tables: 4, Equations: 0, References: 322, Pages: 28, Words: 23247
                Categories
                Bioengineering and Biotechnology
                Review

                natural polymer,scaffold,bone tissue,regeneration,tissue engineering

                Comments

                Comment on this article