25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of cell death mechanisms induced by the vascular disrupting agent OXi4503 during a phase I clinical trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          OXi4503 is a tubulin-binding vascular disrupting agent that has recently completed a Cancer Research UK-sponsored phase I trial. Preclinical studies demonstrated early drug-induced apoptosis in tumour endothelial cells at 1–3 h and secondary tumour cell necrosis between 6 and 72 h.

          Methods:

          To capture both possible outcomes of OXi4503 treatment on cell death, plasma samples for analysis by M30 and M65 ELISAs, which measure different circulating forms of cytokeratin 18 as biomarkers of apoptosis and necrosis, respectively, were collected from patients entered into the trial at early (4/6 h) and later time points (24 h, day 8 and day 15).

          Results:

          OXi4503 induced a selective dose-dependent elevation in M30 antigen levels (apoptosis) at 4/6 h and a similar elevation in M65 antigen levels at 24 h (necrosis) consistent with its preclinical cell death profile. For the purposes of investigating potential biomarker relationships to patient characteristics, the trial population was divided into three groups based on radiological and clinical response: (a) early progression, (b) progressive disease and (c) stable disease (SD)/partial response. A significant increase in antigen concentrations was measured by M65 at 24 h in the SD group compared with the two other groups ( P=0.015, mean increase 30.9%).

          Conclusion:

          These results provide pharmacodynamic evidence of drug mechanism of action in cancer patients and highlight the M65 ELISA as a potentially useful biomarker assay of response to OXi4503.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors.

          Resistance to chemotherapy-induced apoptosis represents a major obstacle to cancer control. Overexpression of Bcl-2 is seen in multiple tumor types and targeting Bcl-2 may provide therapeutic benefit. A phase I study of navitoclax, a novel inhibitor of Bcl-2 family proteins, was conducted to evaluate safety, pharmacokinetics, and preliminary efficacy in patients with solid tumors. Patients enrolled to intermittent dosing cohorts received navitoclax on day -3, followed by dosing on days 1 to 14 of a 21-day cycle. Patients on continuous dosing received a 1-week lead-in dose of 150 mg followed by continuous daily administration. Blood samples were collected for pharmacokinetic analyses, biomarker analyses, and platelet monitoring. Forty-seven patients, including 29 with small-cell lung cancer (SCLC) or pulmonary carcinoid, were enrolled between 2007 and 2008, 35 on intermittent and 12 on continuous dosing cohorts. Primary toxicities included diarrhea (40%), nausea (34%), vomiting (36%), and fatigue (34%); most were grade 1 or 2. Dose- and schedule-dependent thrombocytopenia was seen in all patients. One patient with SCLC had a confirmed partial response lasting longer than 2 years, and eight patients with SCLC or carcinoid had stable disease (one remained on study for 13 months). Pro-gastrin releasing peptide (pro-GRP) was identified as a surrogate marker of Bcl-2 amplification and changes correlated with changes in tumor volume. Navitoclax is safe and well tolerated, with dose-dependent thrombocytopenia as the major adverse effect. Preliminary efficacy data are encouraging in SCLC. Efficacy in SCLC and the utility of pro-GRP as a marker of treatment response will be further evaluated in phase II studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis.

            A neo-epitope in cytokeratin 18 (CK18) that becomes available at an early caspase cleavage event during apoptosis and is not detectable in vital epithelial cells is characterized. The monoclonal antibody M30, specific for this site, can be utilized specifically to recognize apoptotic cells, which show cytoplasmic cytokeratin filaments and aggregates after immunohistochemistry with M30, while viable and necrotic cells are negative. The number of cells recognized by the antibody increases after induction of apoptosis in exponentially growing epithelial cell lines and immunoreactivity is independent of the phosphorylation state of the cytokeratins. The generation of the M30 neo-epitope occurs early in the apoptotic cascade, before annexin V reactivity or positive DNA nick end labelling. In a flow cytometric assay, the majority of the M30-positive cells appear in the 'apoptotic' subG1 peak. Tests with synthetic peptides define positions 387-396 of CK18, with a liberated C-terminus at the caspase cleavage site DALD-S, as the ten-residue epitope of M30. This epitope starts at the end of coil 2 of the predicted CK18 structure, at a probable hinge region, compatible with the sensitivity to proteolytic cleavage. The definition of a specific caspase cleavage site in CK18 as a neo-epitope can be used for quantification of apoptotic epithelial cells with immunocytochemical techniques and is applicable to both fresh and formalin-fixed material. Copyright 1999 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy.

              Serological cell death biomarkers and circulating tumor cells (CTCs) have potential uses as tools for pharmacodynamic blood-based assays and their subsequent application to early clinical trials. In this study, we evaluated both the expression and clinical significance of CTCs and serological cell death biomarkers in patients with small cell lung cancer. Blood samples from 88 patients were assayed using enzyme-linked immunosorbent assays for various cytokeratin 18 products (eg, M65, cell death, M30, and apoptosis) as well as nucleosomal DNA. CTCs (per 7.5 ml of blood) were quantified using Veridex CellSearch technology. Before therapeutic treatment, cell death biomarkers were elevated in patients compared with controls. CTCs were detected in 86% of patients; additionally, CD56 was detectable in CTCs, confirming their neoplastic origin. M30 levels correlated with the percentage of apoptotic CTCs. M30, M65, lactate dehydrogenase, and CTC number were prognostic for patient survival as determined by univariate analysis. Using multivariate analysis, both lactate dehydrogenase and M65 levels remained significant. CTC number fell following chemotherapy, whereas levels of serological cell death biomarkers peaked at 48 hours and fell by day 22, mirroring the tumor response. A 48-hour rise in nucleosomal DNA and M30 levels was associated with early response and severe toxicity, respectively. Our results provide a rationale to include the use of serological biomarkers and CTCs in early clinical trials of new agents for small cell lung cancer.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                Br. J. Cancer
                British Journal of Cancer
                Nature Publishing Group
                0007-0920
                1532-1827
                22 May 2012
                26 April 2012
                : 106
                : 11
                : 1766-1771
                Affiliations
                [1 ]Clinical and Experimental Pharmacology Group, Manchester Cancer Research Centre, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK
                [2 ]Department of Medical Oncology, Mount Vernon Cancer Centre , Middlesex, Northwood HA6 2RN, UK
                [3 ]Drug Development Office, Cancer Research UK , 61 Lincoln's Inn Fields, London WC2A 3PX, UK
                [4 ]Academic Department of Radiation Oncology, University of Manchester, The Christie NHS Foundation Trust , Manchester M20 4BX, UK
                [5 ]Oxford Biomedical Research Centre Cancer Theme, University of Oxford Department of Medical Oncology, Churchill Hospital , Oxford OX3 7LJ, UK
                Author notes
                Article
                bjc2012165
                10.1038/bjc.2012.165
                3364117
                22538971
                73bd3ede-3c2d-4018-88c3-1bf02306bd4f
                Copyright © 2012 Cancer Research UK

                From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 12 March 2012
                : 26 March 2012
                Categories
                Translational Therapeutics

                Oncology & Radiotherapy
                oxi4503,vascular disrupting agent,phase i trial,cell death mechanisms,m30 elisa,m65 elisa

                Comments

                Comment on this article