68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Macrophage Polarization: Convergence Point Targeted by Mycobacterium Tuberculosis and HIV

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the arms race of host–microbe co-evolution, macrophages (Mɸs) have been endowed with strategies to neutralize pathogenic challenge while preserving host integrity. During steady-states conditions, Mɸs perform multiple house-keeping functions governed by their differentiation state, tissue distribution, and signals from the microenvironment. In response to pathogenic challenge and host mediators, however, Mɸs undergo different programs of activation rendering them either pro-inflammatory and microbicidal (M1), or immunosuppressants and tissue repairers (M2). An excessive or prolonged polarization of either program may be detrimental to the host due to potential tissue injury or contribution to pathogenesis. Conversely, intracellular microbes that cause chronic diseases such as tuberculosis and acquired immunodeficiency syndrome exemplify strategies for survival in the host. Indeed, both Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV-1) are successful intracellular microbes that thrive in Mɸs. Given these microbes not only co-circulate throughout the developing world but each has contributed to prevalence and mortality caused by the other, substantial insights into microbe physiology and host defenses then rest in the attempt to fully understand their influence on Mɸ polarization. This review addresses the role of Mɸ polarization in the immune response to, and pathogenesis of, Mtb and HIV.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage polarization in bacterial infections.

          Converging studies have shown that M1 and M2 macrophages are functionally polarized in response to microorganisms and host mediators. Gene expression profiling of macrophages reveals that various Gram-negative and Gram-positive bacteria induce the transcriptional activity of a "common host response," which includes genes belonging to the M1 program. However, excessive or prolonged M1 polarization can lead to tissue injury and contribute to pathogenesis. The so-called M2 macrophages play a critical role in the resolution of inflammation by producing anti-inflammatory mediators. These M2 cells cover a continuum of cells with different phenotypic and functional properties. In addition, some bacterial pathogens induce specific M2 programs in macrophages. In this review, we discuss the relevance of macrophage polarization in three domains of infectious diseases: resistance to infection, infectious pathogenesis, and chronic evolution of infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of the granuloma in expansion and dissemination of early tuberculous infection.

            Granulomas, organized aggregates of immune cells, form in response to persistent stimuli and are hallmarks of tuberculosis. Tuberculous granulomas have long been considered host-protective structures formed to contain infection. However, work in zebrafish infected with Mycobacterium marinum suggests that granulomas contribute to early bacterial growth. Here we use quantitative intravital microscopy to reveal distinct steps of granuloma formation and assess their consequence for infection. Intracellular mycobacteria use the ESX-1/RD1 virulence locus to induce recruitment of new macrophages to, and their rapid movement within, nascent granulomas. This motility enables multiple arriving macrophages to efficiently find and phagocytose infected macrophages undergoing apoptosis, leading to rapid, iterative expansion of infected macrophages and thereby bacterial numbers. The primary granuloma then seeds secondary granulomas via egress of infected macrophages. Our direct observations provide insight into how pathogenic mycobacteria exploit the granuloma during the innate immune phase for local expansion and systemic dissemination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Krüppel-like factor 4 regulates macrophage polarization.

              Current paradigms suggest that two macrophage subsets, termed M1 and M2, are involved in inflammation and host defense. While the distinct functions of M1 and M2 macrophages have been intensively studied - the former are considered proinflammatory and the latter antiinflammatory - the determinants of their speciation are incompletely understood. Here we report our studies that identify Krüppel-like factor 4 (KLF4) as a critical regulator of macrophage polarization. Macrophage KLF4 expression was robustly induced in M2 macrophages and strongly reduced in M1 macrophages, observations that were recapitulated in human inflammatory paradigms in vivo. Mechanistically, KLF4 was found to cooperate with Stat6 to induce an M2 genetic program and inhibit M1 targets via sequestration of coactivators required for NF-κB activation. KLF4-deficient macrophages demonstrated increased proinflammatory gene expression, enhanced bactericidal activity, and altered metabolism. Furthermore, mice bearing myeloid-specific deletion of KLF4 exhibited delayed wound healing and were predisposed to developing diet-induced obesity, glucose intolerance, and insulin resistance. Collectively, these data identify KLF4 as what we believe to be a novel regulator of macrophage polarization.
                Bookmark

                Author and article information

                Journal
                Front Immunol
                Front Immunol
                Front. Immun.
                Frontiers in Immunology
                Frontiers Research Foundation
                1664-3224
                20 July 2011
                15 September 2011
                2011
                : 2
                : 43
                Affiliations
                [1] 1simpleCNRS, Institut de Pharmacologie et de Biologie Structurale Toulouse, France
                [2] 2simpleUPS Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse Toulouse, France
                Author notes

                Edited by: Amiram Ariel, University of Haifa, Israel

                Reviewed by: Andreas Ludwig, RWTH Aachen University, Germany; Paola Allavena, Clinical Institute Humanitas, Italy

                *Correspondence: Olivier Neyrolles, CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, F-31077 Toulouse, France. e-mail: olivier.neyrolles@ 123456ipbs.fr

                Geanncarlo Lugo-Villarino and Christel Vérollet have contributed equally to this work.

                This article was submitted to Frontiers in Inflammation, a specialty of Frontiers in Immunology.

                Article
                10.3389/fimmu.2011.00043
                3342390
                22566833
                73c89764-1eb2-4cf5-8caa-8a0f78417330
                Copyright © 2011 Lugo-Villarino, Vérollet, Maridonneau-Parini and Neyrolles.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 29 June 2011
                : 25 August 2011
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 58, Pages: 7, Words: 6025
                Categories
                Immunology
                Mini Review Article

                Immunology
                macrophage,mycobacteria,hiv,tuberculosis,polarization,aids
                Immunology
                macrophage, mycobacteria, hiv, tuberculosis, polarization, aids

                Comments

                Comment on this article