10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Programmable probiotics for detection of cancer in urine

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic biology moving into the clinic.

            Synthetic biology is an emerging field focused on engineering biomolecular systems and cellular capabilities for a variety of applications. Substantial progress began a little over a decade ago with the creation of synthetic gene networks inspired by electrical engineering. Since then, the field has designed and built increasingly complex circuits and constructs and begun to use these systems in a variety of settings, including the clinic. These efforts include the development of synthetic biology therapies for the treatment of infectious diseases and cancer, as well as approaches in vaccine development, microbiome engineering, cell therapy, and regenerative medicine. Here, we highlight advances in the biomedical application of synthetic biology and discuss the field's clinical potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A modern view of phenylalanine ammonia lyase.

              Phenylalanine ammonia lyase (PAL; E.C.4.3.1.5), which catalyses the biotransformation of L-phenylalanine to trans-cinnamic acid and ammonia, was first described in 1961 by Koukol and Conn. Since its discovery, much knowledge has been gathered with reference to the enzyme's catabolic role in microorganisms and its importance in the phenyl propanoid pathway of plants. The 3-dimensional structure of the enzyme has been characterized using X-ray crystallography. This has led to a greater understanding of the mechanism of PAL-catalyzed reactions, including the discovery of a recently described cofactor, 3,5-dihydro-5-methyldiene-4H-imidazol-4-one. In the past 3 decades, PAL has gained considerable significance in several clinical, industrial, and biotechnological applications. The reversal of the normal physiological reaction can be effectively employed in the production of optically pure L-phenylalanine, which is a precursor of the noncalorific sweetener aspartame (L-phenylalanyl-L-aspartyl methyl ester). The enzyme's natural ability to break down L-phenylalanine makes PAL a reliable treatment for the genetic condition phenylketonuria. In this mini-review, we discuss prominent details relating to the physiological role of PAL, the mechanism of catalysis, methods of determination and purification, enzyme kinetics, and enzyme activity in nonaqueous media. Two topics of current study on PAL, molecular biology and crystal structure, are also discussed.
                Bookmark

                Author and article information

                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Nature America, Inc
                1087-0156
                1546-1696
                August 13 2018
                August 13 2018
                August 13 2018
                August 13 2018
                Article
                10.1038/nbt.4222
                30102294
                73ebbd24-b096-4311-94c8-b023c691838a
                © 2018
                History

                Comments

                Comment on this article