+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Expression of Opioid Receptors in Osteoblast-Like MG-63 Cells, and Effects of Different Opioid Agonists on Alkaline Phosphatase and Osteocalcin Secretion by These Cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          We have previously shown that several stressful situations associated with tissue injury determine a decrease in serum osteocalcin concentration. Since reduced osteocalcin production is a marker of decreased osteoblastic activity, this finding could be related to the pathogenesis of osteoporosis secondary to some diseases. Endogenous opioids are involved in stress response. Proenkephalin-derived peptides have been shown to inhibit alkaline phosphatase activity, another marker of bone formation, in the murine cell line ROS-17/2.8. On the other hand, serum osteocalcin has been reported as being low in heroin abusers. We have therefore thought it of interest to study the presence of opioid receptors in the human osteoblast-like cell line MG-63, and to evaluate the effects of different opioid agonists on the secretion of alkaline phosphatase and osteocalcin by these cells. The presence of opioid receptors was studied by means of RT-PCR and immunohistochemistry. RT-PCR studies suggested the presence of specific mRNA for the three types of receptors, and immunohistochemistry clearly showed their occurrence. Osteocalcin synthesis was significantly inhibited by high concentrations of the mu agonists morphine and ( D-Ala<sup>2</sup>,N-MePhe<sup>4</sup>,Gly<sup>5</sup>-ol)-enkephalin although no changes were seen with the delta agonist ( D-Ala<sup>2</sup>, D-leu<sup>5</sup>)-enkephalin. Morphine-induced osteocalcin inhibition was abolished when osteoblastic cells were incubated simultaneously with naloxone, whereas it was potentiated when cells were preincubated with naloxone. None of the opioid agonists modified the secretion of alkaline phosphatase. In conclusion, human osteoblast-like cells MG-63 express the three types of opioid receptors. Endogenous opioids may be involved in the reduction of osteocalcin observed in stressful situations associated with tissue injury.

          Related collections

          Most cited references 6

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            • Record: found
            • Abstract: found
            • Article: not found

            A potent and selective endogenous agonist for the mu-opiate receptor.

            Peptides have been identified in mammalian brain that are considered to be endogenous agonists for the delta (enkephalins) and kappa (dynorphins) opiate receptors, but none has been found to have any preference for the mu receptor. Because morphine and other compounds that are clinically useful and open to abuse act primarily at the mu receptor, it could be important to identify endogenous peptides specific for this site. Here we report the discovery and isolation from brain of such a peptide, endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has a high affinity (Ki = 360 pM) and selectivity (4,000- and 15,000-fold preference over the delta and kappa receptors) for the mu receptor. This peptide is more effective than the mu-selective analogue DAMGO in vitro and it produces potent and prolonged analgesia in mice. A second peptide, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), which differs by one amino acid, was also isolated. The new peptides have the highest specificity and affinity for the mu receptor of any endogenous substance so far described and they may be natural ligands for this receptor.
              • Record: found
              • Abstract: not found
              • Article: not found

              An opiate-receptor gene family reunion.


                Author and article information

                S. Karger AG
                September 2000
                27 September 2000
                : 72
                : 3
                : 187-194
                aDepartamento de Medicina Interna and bDepartamento de Anatomía Patológica, Hospital Marqués de Valdecilla, Universidad de Cantabria, Santander, and cDepartamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
                54586 Neuroendocrinology 2000;72:187–194
                © 2000 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, References: 35, Pages: 8
                Peripheral Neuroendocrinology


                Comment on this article