2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nusinersen Wearing-Off in Adult 5q-Spinal Muscular Atrophy Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The antisense oligonucleotide nusinersen was the first drug treatment available for all types of 5q-spinal muscular atrophy (SMA). The dosing regime has been derived from pivotal clinical trials in infants and children. The efficacy of nusinersen in severely affected adult SMA patients is still questionable, as no placebo-controlled trials have been conducted. In the present study, we systematically examined wearing-off phenomena during nusinersen maintenance dosing using a patient-centered approach. We found that adult SMA patients perceived wearing-off after nearly half of 51 investigated nusinersen administrations, primarily within the last month prior to the next administration. Symptoms and functions affected were mainly general strength and arm and leg muscle function next to endurance and independence in daily routine. Lack of walking ability and higher body mass index were characteristic phenotypic features in patients with consistent wearing-off effects. We assume that specific SMA phenotypes might benefit from higher dosing, shorter treatment intervals, change of treatment administration or a combination of all. Efforts towards treatment optimization may result in higher efficacy in distinct phenotypes.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy

          New England Journal of Medicine, 377(18), 1723-1732
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy

            Nusinersen is an antisense oligonucleotide drug that modulates pre-messenger RNA splicing of the survival motor neuron 2 ( SMN2) gene. It has been developed for the treatment of spinal muscular atrophy (SMA).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

              This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. Outline 1 Overview 2 CSF formation 2.1 Transcription factors 2.2 Ion transporters 2.3 Enzymes that modulate transport 2.4 Aquaporins or water channels 2.5 Receptors for neuropeptides 3 CSF pressure 3.1 Servomechanism regulatory hypothesis 3.2 Ontogeny of CSF pressure generation 3.3 Congenital hydrocephalus and periventricular regions 3.4 Brain response to elevated CSF pressure 3.5 Advances in measuring CSF waveforms 4 CSF flow 4.1 CSF flow and brain metabolism 4.2 Flow effects on fetal germinal matrix 4.3 Decreasing CSF flow in aging CNS 4.4 Refinement of non-invasive flow measurements 5 CSF volume 5.1 Hemodynamic factors 5.2 Hydrodynamic factors 5.3 Neuroendocrine factors 6 CSF turnover rate 6.1 Adverse effect of ventriculomegaly 6.2 Attenuated CSF sink action 7 CSF composition 7.1 Kidney-like action of CP-CSF system 7.2 Altered CSF biochemistry in aging and disease 7.3 Importance of clearance transport 7.4 Therapeutic manipulation of composition 8 CSF recycling in relation to ISF dynamics 8.1 CSF exchange with brain interstitium 8.2 Components of ISF movement in brain 8.3 Compromised ISF/CSF dynamics and amyloid retention 9 CSF reabsorption 9.1 Arachnoidal outflow resistance 9.2 Arachnoid villi vs. olfactory drainage routes 9.3 Fluid reabsorption along spinal nerves 9.4 Reabsorption across capillary aquaporin channels 10 Developing translationally effective models for restoring CSF balance 11 Conclusion
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Brain Sci
                Brain Sci
                brainsci
                Brain Sciences
                MDPI
                2076-3425
                13 March 2021
                March 2021
                : 11
                : 3
                Affiliations
                Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; schreiber-katz.olivia@ 123456mh-hannover.de (O.S.-K.); petri.susanne@ 123456mh-hannover.de (S.P.)
                Author notes
                Article
                brainsci-11-00367
                10.3390/brainsci11030367
                7998943
                74085cd7-430e-45a4-a2de-0e4c26334ffb
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                spinal muscular atrophy,sma,nusinersen,wearing-off,patient-reported outcome,antisense oligonucleotide,adult 5q-sma patients

                Comments

                Comment on this article