6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Band Gap Control in Bilayer Graphene by Co-Doping with B-N Pairs

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The electronic band structure of bilayer graphene is studied systematically in the presence of substitutional B and/or N doping, using density functional theory with van der Waals correction. We show that introduction of B-N pairs into bilayer graphene can be used to create a substantial band gap, stable against thermal fluctuations at room temperature, but otherwise leaves the electronic band structure in the vicinity of the Fermi energy largely unaffected. Introduction of B-N pairs into B and/or N doped bilayer graphene likewise hardly modifies the band dispersions. In semiconducting systems (same amount of B and N dopants), however, the size of the band gap is effectively tuned in the presence of B-N pairs.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The electronic properties of graphene

          This article reviews the basic theoretical aspects of graphene, a one atom thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. We show that the Dirac electrons behave in unusual ways in tunneling, confinement, and integer quantum Hall effect. We discuss the electronic properties of graphene stacks and show that they vary with stacking order and number of layers. Edge (surface) states in graphene are strongly dependent on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. We also discuss how different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Graphene: Status and Prospects

            A. K. Geim (2010)
            Graphene is a wonder material with many superlatives to its name. It is the thinnest material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have the smallest effective mass (it is zero) and can travel micrometer-long distances without scattering at room temperature. Graphene can sustain current densities 6 orders higher than copper, shows record thermal conductivity and stiffness, is impermeable to gases and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a bench-top experiment. What are other surprises that graphene keeps in store for us? This review analyses recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Detection of Individual Gas Molecules Absorbed on Graphene

              The ultimate aspiration of any detection method is to achieve such a level of sensitivity that individual quanta of a measured value can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphenes surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.
                Bookmark

                Author and article information

                Contributors
                udo.schwingenschlogl@kaust.edu.sa
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 December 2018
                6 December 2018
                2018
                : 8
                : 17689
                Affiliations
                ISNI 0000 0001 1926 5090, GRID grid.45672.32, King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), ; Thuwal, 23955-6900 Saudi Arabia
                Article
                35671
                10.1038/s41598-018-35671-2
                6283863
                7430d834-921d-487e-8c69-9f23b1f79aab
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 May 2018
                : 9 November 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article