23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants can perceive environmental changes and respond to external stressors. Here, we show that OsNAC2, a member of the NAC transcription factor family, was strongly induced by ABA and osmotic stressors such as drought and high salt. With reduced yields under drought conditions at the flowering stage, OsNAC2 overexpression lines had lower resistance to high salt and drought conditions. RNAi plants showed enhanced tolerance to high salinity and drought stress at both the vegetative and flowering stages. Furthermore, RNAi plants had improved yields after drought stress. A microarray assay indicated that many ABA-dependent stress-related genes were down-regulated in OsNAC2 overexpression lines. We further confirmed that OsNAC2 directly binds the promoters of LATE EMBRYOGENESIS ABUNDANT 3 (OsLEA3) and Stress-Activated Protein Kinases 1 (OsSAPK1), two marker genes in the abiotic stress and ABA response pathways, respectively. Our results suggest that in rice OsNAC2 regulates both abiotic stress responses and ABA-mediated responses, and acts at the junction between the ABA and abiotic stress pathways.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          NAC proteins: regulation and role in stress tolerance.

          The plant-specific NAC (NAM, ATAF1,2 and CUC2) proteins constitute a major transcription factor family renowned for their roles in several developmental programs. Despite their highly conserved DNA-binding domains, their remarkable diversification across plants reflects their numerous functions. Lately, they have received much attention as regulators in various stress signaling pathways which may include interplay of phytohormones. This review summarizes the recent progress in research on NACs highlighting the proteins' potential for engineering stress tolerance against various abiotic and biotic challenges. We discuss regulatory components and targets of NAC proteins in the context of their prospective role for crop improvement strategies via biotechnological intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant.

            Mutations in CUC1 and CUC2 (for CUP-SHAPED COTYLEDON), which are newly identified genes of Arabidopsis, caused defects in the separation of cotyledons (embryonic organs), sepals, and stamens (floral organs) as well as in the formation of shoot apical meristems. These defects were most apparent in the double mutant. Phenotypes of the mutants suggest a common mechanism for separating adjacent organs within the same whorl in both embryos and flowers. We cloned the CUC2 gene and found that the encoded protein was homologous to the petunia NO APICAL MERISTEM (NAM) protein, which is thought to act in the development of embryos and flowers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NAC transcription factors in plant abiotic stress responses.

              Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                11 January 2017
                2017
                : 7
                : 40641
                Affiliations
                [1 ]State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Science, Fudan University , Shanghai 200433, China
                [2 ]Rice Research Institute, Sichuan Agricultural University , Sichuan 611130, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep40641
                10.1038/srep40641
                5225416
                28074873
                743a6373-1fb0-4c7b-8935-8c93dc3e4640
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 27 June 2016
                : 09 December 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article