6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ti-based compounds as anode materials for Li-ion batteries

      , ,
      Energy & Environmental Science
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references195

          • Record: found
          • Abstract: found
          • Article: not found

          Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.

          We report a facile strategy to synthesize the nanocomposite of Co(3)O(4) nanoparticles anchored on conducting graphene as an advanced anode material for high-performance lithium-ion batteries. The Co(3)O(4) nanoparticles obtained are 10-30 nm in size and homogeneously anchor on graphene sheets as spacers to keep the neighboring sheets separated. This Co(3)O(4)/graphene nanocomposite displays superior Li-battery performance with large reversible capacity, excellent cyclic performance, and good rate capability, highlighting the importance of the anchoring of nanoparticles on graphene sheets for maximum utilization of electrochemically active Co(3)O(4) nanoparticles and graphene for energy storage applications in high-performance lithium-ion batteries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion.

            We used anionic sulfate surfactants to assist the stabilization of graphene in aqueous solutions and facilitate the self-assembly of in situ grown nanocrystalline TiO2, rutile and anatase, with graphene. These nanostructured TiO2-graphene hybrid materials were used for investigation of Li-ion insertion properties. The hybrid materials showed significantly enhanced Li-ion insertion/extraction in TiO2. The specific capacity was more than doubled at high charge rates, as compared with the pure TiO2 phase. The improved capacity at high charge-discharge rate may be attributed to increased electrode conductivity in the presence of a percolated graphene network embedded into the metal oxide electrodes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Zero-Strain Insertion Material of Li[Li[sub 1∕3]Ti[sub 5∕3]]O[sub 4] for Rechargeable Lithium Cells

                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2012
                2012
                : 5
                : 5
                : 6652
                Article
                10.1039/c2ee03410g
                743c1813-9c2f-4e5a-9558-1517cebf3086
                © 2012
                History

                Comments

                Comment on this article