27
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and seismic stratigraphic framework of the NanTroSEIZE Stage 1 transect

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The location of the Integrated Ocean Drilling Program’s (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) was based on regional two-dimensional seismic reflection surveys carried out by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). Final site locations were chosen based on a three-dimensional (3-D) seismic reflection survey acquired across the seaward margin of Kumano Basin and the accretionary prism from the basin to the deformation front. This survey covered a region 12 km wide (approximately parallel to the regional structural strike) and 56 km long (approximately perpendicular to the regional strike) and provided detailed images of the structure and seismic stratigraphy of the drill sites. Sites were drilled in the frontal thrust zone at the toe of the accretionary prism, the frontal region of the megasplay fault zone, and the forearc basin. The 3-D seismic data volume images a main frontal thrust at the prism toe with the hanging wall thrust at least 7.5 km seaward over the trench. This configuration is different from that in other parts of the Nankai prism. At the shallow end of the megasplay, the data images a complex thrust system that truncates older structures in the underlying accretionary prism and shows that the hanging wall block has overridden more than 1250 m of young slope sediments. At the forearc basin site, we interpret landward-dipping forearc basin strata onlapping older slope sediments, which in turn overlie an older part of the accretionary prism.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Source mechanisms and tectonic significance of historical earthquakes along the nankai trough, Japan

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Splay Fault Branching Along the Nankai Subduction Zone

              J.-O. Park (2002)
              Seismic reflection profiles reveal steeply landward-dipping splay faults in the rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai subduction zone. These splay faults branch upward from the plate-boundary interface (that is, the subduction zone) at a depth of approximately 10 kilometers, approximately 50 to 55 kilometers landward of the trough axis, breaking through the upper crustal plate. Slip on the active splay fault may be an important mechanism that accommodates the elastic strain caused by relative plate motion.
                Bookmark

                Author and article information

                Journal
                10.2204/iodp.proc.314315316.2009
                Proceedings of the IODP
                Integrated Ocean Drilling Program
                1930-1014
                11 March 2009
                Article
                10.2204/iodp.proc.314315316.102.2009
                743faa0c-0ffd-40c9-a4a8-ffc400972e6c

                This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History

                Earth & Environmental sciences,Oceanography & Hydrology,Geophysics,Chemistry,Geosciences

                Comments

                Comment on this article