19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evaluation of Prehospital Blood Products to Attenuate Acute Coagulopathy of Trauma in a Model of Severe Injury and Shock in Anesthetized Pigs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Acute trauma coagulopathy (ATC) is seen in 30% to 40% of severely injured casualties. Early use of blood products attenuates ATC, but the timing for optimal effect is unknown. Emergent clinical practice has started prehospital deployment of blood products (combined packed red blood cells and fresh frozen plasma [PRBCs:FFP], and alternatively PRBCs alone), but this is associated with significant logistical burden and some clinical risk. It is therefore imperative to establish whether prehospital use of blood products is likely to confer benefit. This study compared the potential impact of prehospital resuscitation with (PRBCs:FFP 1:1 ratio) versus PRBCs alone versus 0.9% saline (standard of care) in a model of severe injury. Twenty-four terminally anesthetised Large White pigs received controlled soft tissue injury and controlled hemorrhage (35% blood volume) followed by a 30-min shock phase. The animals were allocated randomly to one of three treatment groups during a 60-min prehospital evacuation phase: hypotensive resuscitation (target systolic arterial pressure 80 mmHg) using either 0.9% saline (group 1, n = 9), PRBCs:FFP (group 2, n = 9), or PRBCs alone (group 3, n = 6). Following this phase, an in-hospital phase involving resuscitation to a normotensive target (110 mmHg systolic arterial blood pressure) using PRBCs:FFP was performed in all groups. There was no mortality in any group. A coagulopathy developed in group 1 (significant increase in clot initiation and dynamics shown by TEG [thromboelastography] R and K times) that persisted for 60 to 90 min into the in-hospital phase. The coagulopathy was significantly attenuated in groups 2 and 3 ( P = 0.025 R time and P = 0.035 K time), which were not significantly different from each other. Finally, the volumes of resuscitation fluid required was significantly greater in group 1 compared with groups 2 and 3 ( P = 0.0067) (2.8 ± 0.3 vs. 1.9 ± 0.2 and 1.8 ± 0.3 L, respectively). This difference was principally due to a greater volume of saline used in group 1 ( P = 0.001). Prehospital PRBCs:FFP or PRBCs alone may therefore attenuate ATC. Furthermore, the amount of crystalloid may be reduced with potential benefit of reducing the extravasation effect and later tissue edema.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Early coagulopathy predicts mortality in trauma.

          Coagulopathy and hemorrhage are known contributors to trauma mortality; however, the actual relationship of prothrombin time (PT) and partial thromboplastin time (PTT) to mortality is unknown. Our objective was to measure the predictive value of the initial coagulopathy profile for trauma-related mortality. We reviewed prospectively collected data on trauma patients presenting to a Level I trauma center. A logistic regression analysis was performed of PT, PTT, platelet count, and confounders to determine whether coagulopathy is a predictor of all-cause mortality. From a trauma registry cohort of 20103 patients, 14397 had complete disposition data for initial analysis and 7638 had complete data for all variables in the final analysis. The total cohort was 76.2% male, the mean age was 38 years (range, 1-108 years), and the median Injury Severity Score was 9. There were 1276 deaths (all-cause mortality, 8.9%). The prevalence of coagulopathy early in the postinjury period was substantial, with 28% of patients having an abnormal PT (2994 of 10790) and 8% of patients having an abnormal PTT (826 of 10453) on arrival at the trauma bay. In patients with disposition data and a normal PT, 489 of 7796 died, as compared with 579 of 2994 with an abnormal PT (6.3% vs. 19.3%; chi2 = 414.1, p < 0.001). Univariate analysis generated an odds ratio of 3.6 (95% confidence interval [CI], 3.15-4.08; p < 0.0001) for death with abnormal PT and 7.81 (95% CI, 6.65-9.17; p < 0.001) for deaths with an abnormal PTT. The PT and PTT remained independent predictors of mortality in a multiple regression model, whereas platelet count did not. The model also included the independent risk factors age, Injury Severity Score, scene and trauma-bay blood pressure, hematocrit, base deficit, and head injury. The model generated an adjusted odds ratio of 1.35 for PT (95% CI, 1.11-1.68; p < 0.001) and 4.26 for PTT (95% CI, 3.23-5.63; p < 0.001). The incidence of coagulation abnormalities, early after trauma, is high and they are independent predictors of mortality even in the presence of other risk factors. An initial abnormal PT increases the adjusted odds of dying by 35% and an initial abnormal PTT increases the adjusted odds of dying by 326%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology of trauma deaths: a reassessment.

            Recognizing the impact of the 1977 San Francisco study of trauma deaths in trauma care, our purpose was to reassess those findings in a contemporary trauma system. Cross-sectional. All trauma deaths occurring in Denver City and County during 1992 were reviewed; data were obtained by cross-referencing four databases: paramedic trip reports, trauma registries, coroner autopsy reports and police reports. There were 289 postinjury fatalities; mean age was 36.8 +/- 1.2 years and mean Injury Severity Score (ISS) was 35.7 +/- 1.2. Predominant injury mechanisms were gunshot wounds in 121 (42%), motorvehicle accidents in 75 (38%) and falls in 23 (8%) cases. Seven (2%) individuals sustained lethal burns. Ninety eight (34%) deaths occurred in the pre-hospital setting. The remaining 191 (66%) patients were transported to the hospital. Of these, 154 (81%) died in the first 48 hours (acute), 11 (6%) within three to seven days (early) and 26 (14%) after seven days (late). Central nervous system injuries were the most frequent cause of death (42%), followed by exsanguination (39%) and organ failure (7%). While acute and early deaths were mostly due to the first two causes, organ failure was the most common cause of late death (61%). In comparison with the previous report, we observed similar injury mechanisms, demographics and causes of death. However, in our experience, there was an improved access to the medical system, greater proportion of late deaths due to brain injury and lack of the classic trimodal distribution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis.

              Coagulopathy is present at admission in 25% of trauma patients, is associated with shock and a 5-fold increase in mortality. The coagulopathy has recently been associated with systemic activation of the protein C pathway. This study was designed to characterize the thrombotic, coagulant and fibrinolytic derangements of trauma-induced shock. This was a prospective cohort study of major trauma patients admitted to a single trauma center. Blood was drawn within 10 minutes of arrival for analysis of partial thromboplastin and prothrombin times, prothrombin fragments 1 + 2 (PF1 + 2), fibrinogen, factor VII, thrombomodulin, protein C, plasminogen activator inhibitor-1 (PAI-1), thrombin activatable fibrinolysis inhibitor (TAFI), tissue plasminogen activator (tPA), and D-dimers. Base deficit was used as a measure of tissue hypoperfusion. Two hundred eight patients were studied. Systemic hypoperfusion was associated with anticoagulation and hyperfibrinolysis. Coagulation was activated and thrombin generation was related to injury severity, but acidosis did not affect Factor VII or PF1 + 2 levels. Hypoperfusion-induced increase in soluble thrombomodulin levels was associated with reduced fibrinogen utilization, reduction in protein C and an increase in TAFI. Hypoperfusion also resulted in hyperfibrinolysis, with raised tPA and D-Dimers, associated with the observed reduction in PAI-1 and not alterations in TAFI. Acute coagulopathy of trauma is associated with systemic hypoperfusion and is characterized by anticoagulation and hyperfibrinolysis. There was no evidence of coagulation factor loss or dysfunction at this time point. Soluble thrombomodulin levels correlate with thrombomodulin activity. Thrombin binding to thrombomodulin contributes to hyperfibrinolysis via activated protein C consumption of PAI-1.
                Bookmark

                Author and article information

                Journal
                Shock
                Shock
                SHK
                Shock (Augusta, Ga.)
                Lippincott Williams & Wilkins
                1073-2322
                1540-0514
                August 2015
                15 July 2015
                : 44
                : Suppl 1
                : 138-148
                Affiliations
                [1]*CBR Division, Defence Science and Technology Laboratory, Defence Science and Technology Laboratory, Porton Down, Salisbury; Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London; and University of Birmingham, Birmingham, United Kingdom
                Author notes
                Address reprint requests to Emrys Kirkman, PhD, Bldg 4, Dstl, Porton Down, Salisbury SP4 0JQ, United Kingdom. E-mail: ekirkman@ 123456dstl.gov.uk .
                Article
                SHK50018 00020
                10.1097/SHK.0000000000000409
                4498650
                26177017
                74432af0-83c4-49cd-b9e7-efae767afc51
                Copyright © Crown copyright (2015), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, United Kingdom, or e-mail psi@ 123456nationalarchives.gsi.gov.uk
                History
                : 17 March 2015
                : 02 April 2015
                : 14 May 2015
                Categories
                Basic Science Aspects
                Custom metadata
                TRUE

                blood,coagulopathy,plasma,shock,trauma
                blood, coagulopathy, plasma, shock, trauma

                Comments

                Comment on this article