+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Recent advances in technology supporting biopharmaceutical production from mammalian cells


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The demand for production of glycoproteins from mammalian cell culture continues with an increased number of approvals as biopharmaceuticals for the treatment of unmet medical needs. This is particularly the case for humanized monoclonal antibodies which are the largest and fastest growing class of therapeutic pharmaceuticals. This demand has fostered efforts to improve the efficiency of production as well as to address the quality of the final product. Chinese hamster ovary cells are the predominant hosts for stable transfection and high efficiency production on a large scale. Specific productivity of recombinant glycoproteins from these cells can be expected to be above 50 pg/cell/day giving rise to culture systems with titers of around 5 g/L if appropriate fed-batch systems are employed. Cell engineering can delay the onset of programmed cell death to ensure prolonged maintenance of productive viable cells. The clinical efficacy and quality of the final product can be improved by strategic metabolic engineering. The best example of this is the targeted production of afucosylated antibodies with enhanced antibody-dependent cell cytotoxicity, an important function for use in cancer therapies. The development of culture media from non-animal sources continues and is important to ensure products of consistent quality and without the potential danger of contamination. Process efficiencies may also be improved by employing disposable bioreactors with the associated minimization of downtime. Finally, advances in downstream processing are needed to handle the increased supply of product from the bioreactor but maintaining the high purity demanded of these biopharmaceuticals.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG.

          Rheumatoid arthritis (RA) is a widely prevalent (1-3%) chronic systemic disease thought to have an autoimmune component; both humoral and cellular mechanisms have been implicated. Primary osteoarthritis (OA) is considered to be distinct from rheumatoid arthritis, and here damage is thought to be secondary to cartilage degeneration. In rheumatoid arthritis, immune complexes are present that consist exclusively of immunoglobulin, implying that this is both the 'antibody' (rheumatoid factor [RF]) and the 'antigen' (most commonly IgG). Autoantigenic reactivity has been localized to the constant-region (C gamma 2) domains of IgG. There is no evidence for a polypeptide determinant but carbohydrate changes have been reported. We have therefore conducted a study, simultaneously in Oxford and Tokyo, to compare in detail the N-glycosylation pattern of serum IgG (Fig. 1) isolated from normal individuals and from patients with either primary osteoarthritis or rheumatoid arthritis. The results, which required an evaluation of the primary sequences of approximately 1,400 oligosaccharides from 46 IgG samples, indicate that: (1) IgG isolated from normal individuals, patients with RA and patients with OA contains different distributions of asparagine-linked bi-antennary complex-type oligosaccharide structures, (2) in neither disease is the IgG associated with novel oligosaccharide structures, but the observed differences are due to changes in the relative extent of galactosylation compared with normal individuals. This change results in a 'shift' in the population of IgG molecules towards those carrying complex oligosaccharides, one or both of whose arms terminate in N-acetylglucosamine. These two arthritides may therefore be glycosylation diseases, reflecting changes in the intracellular processing, or post-secretory degradation of N-linked oligosaccharides.
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy and apoptosis: what is the connection?

            The therapeutic potential of autophagy for the treatment cancer and other diseases is beset by paradoxes stemming from the complexity of the interactions between the apoptotic and autophagic machinery. The simplest question of how autophagy acts as both a protector and executioner of cell death remains the subject of substantial controversy. Elucidating the molecular interactions between the processes will help us understand how autophagy can modulate cell death, whether autophagy is truly a cell death mechanism, and how these functions are regulated. We suggest that, despite many connections between autophagy and apoptosis, a strong causal relationship wherein one process controls the other, has not been demonstrated adequately. Knowing when and how to modulate autophagy therapeutically depends on understanding these connections. Copyright © 2011 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity.

              To generate industrially applicable new host cell lines for antibody production with optimizing antibody-dependent cellular cytotoxicity (ADCC) we disrupted both FUT8 alleles in a Chinese hamster ovary (CHO)/DG44 cell line by sequential homologous recombination. FUT8 encodes an alpha-1,6-fucosyltransferase that catalyzes the transfer of fucose from GDP-fucose to N-acetylglucosamine (GlcNAc) in an alpha-1,6 linkage. FUT8(-/-) cell lines have morphology and growth kinetics similar to those of the parent, and produce completely defucosylated recombinant antibodies. FUT8(-/-)-produced chimeric anti-CD20 IgG1 shows the same level of antigen-binding activity and complement-dependent cytotoxicity (CDC) as the FUT8(+/+)-produced, comparable antibody, Rituxan. In contrast, FUT8(-/-)-produced anti-CD20 IgG1 strongly binds to human Fcgamma-receptor IIIa (FcgammaRIIIa) and dramatically enhances ADCC to approximately 100-fold that of Rituxan. Our results demonstrate that FUT8(-/-) cells are ideal host cell lines to stably produce completely defucosylated high-ADCC antibodies with fixed quality and efficacy for therapeutic use.

                Author and article information

                Appl Microbiol Biotechnol
                Appl. Microbiol. Biotechnol
                Applied Microbiology and Biotechnology
                Springer-Verlag (Berlin/Heidelberg )
                5 October 2012
                : 96
                : 4
                : 885-894
                [1 ]GRID grid.21613.37, ISNI 0000000419369609, Department of Microbiology, , University of Manitoba, ; Winnipeg, Manitoba R3T 2N2 Canada
                [2 ]GRID grid.412873.b, ISNI 0000000404841712, Pharmaceutical Biotechnology Lab., Faculty of Pharmacy, , Universidad Autónoma del Estado de Morelos, ; Morelos, Mexico
                © Springer-Verlag Berlin Heidelberg 2012

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                : 9 July 2012
                : 17 September 2012
                : 18 September 2012
                Custom metadata
                © Springer-Verlag 2012

                biopharmaceuticals,cho cells,glycosylation,apoptosis,antibodies,vaccines
                biopharmaceuticals, cho cells, glycosylation, apoptosis, antibodies, vaccines


                Comment on this article