10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rapid screening of high‐priority N‐nitrosamines in pharmaceutical, forensic, and environmental samples with paper spray ionization and filter cone spray ionization‐mass spectrometry

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rationale

          The burgeoning concern of N‐nitrosamine (NAM) contamination found in various pharmaceutical compositions has increased the demand for rapid and reliable screening methods to better assess the breadth of the problem. These carcinogenic compounds are also found in food, water, and soil, and they have been used in poison‐related homicides.

          Methods

          A combination of complementary, ambient ionization methods, paper spray ionization (PSI) and filter cone spray ionization (FCSI)‐mass spectrometry (MS), was characterized towards trace‐level residue screening of select NAMs (e.g., N‐nitrosodimethylamine, N‐nitrosodiethylamine, N‐nitrosodibutylamine) directly from complex and problematic matrices of interest, including prescription and over‐the‐counter tablets, drinking water, soil, and consumable goods. Spectral data for analyte confirmation and detection limit studies were collected using a Thermo LCQ Fleet ion trap mass spectrometer.

          Results

          PSI‐MS and FCSI‐MS readily produced mass spectral data marked by their simplicity (e.g., predominantly protonated molecular ions observed) and congruence with traditional electrospray ionization mass spectra in under 2 min. per sample. Both methods proved robust to the complex matrices tested, yielding ion signatures for target NAMs, as well as active pharmaceutical ingredients for analyzed tablets, flavorants inherent to food products, etc. Low part‐per‐million detection limits were observed but were shown dependent on sample composition.

          Conclusions

          PSI‐MS and FCSI‐MS were successful in detecting trace‐level NAMS in complex liquid‐ and solid‐phase matrices with little to no prior preparation. This work suggests that these methodologies can provide a means for assessing problematic pharmaceutical adulterants/degradants for expedited quality control, as well as enhancing environmental stewardship efforts and forensic investigations.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Development, characterization, and application of paper spray ionization.

          Paper spray is developed as a direct sampling ionization method for mass spectrometric analysis of complex mixtures. Ions of analyte are generated by applying a high voltage to a paper triangle wetted with a small volume (<10 microL) of solution. Samples can be preloaded onto the paper, added with the wetting solution, or transferred from surfaces using the paper as a wipe. It is demonstrated that paper spray is applicable to the analysis of a wide variety of compounds, including small organic compounds, peptides, and proteins. Procedures are developed for analysis of dried biofluid spots and applied to therapeutic drug monitoring with whole blood samples and to illicit drug detection in raw urine samples. Limits of detection of 50 ng/mL (or 20 pg absolute) are achieved for atenolol in bovine blood. The combination of sample collection from surfaces and paper spray ionization also enables fast chemical screening at high sensitivity, for example 100 pg of heroin distributed on a surface and agrochemicals on fruit peels are detectable. Online derivatization with a preloaded reagent is demonstrated for analysis of cholesterol in human serum. The combination of paper spray with miniature mass spectrometers offers a powerful impetus to wide application of mass spectrometry in nonlaboratory environments.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ambient ionization mass spectrometry: recent developments and applications

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation--a review.

              Biogenic amines are non-volatile amines formed by decarboxylation of amino acids. Although many biogenic amines have been found in fish, only histamine, cadaverine, and putrescine have been found to be significant in fish safety and quality determination. Despite a widely reported association between histamine and scombroid food poisoning, histamine alone appears to be insufficient to cause food toxicity. Putrescine and cadaverine have been suggested to potentiate histamine toxicity. With respect to spoilage on the other hand, only cadaverine has been found to be a useful index of the initial stage of fish decomposition. The relationship between biogenic amines, sensory evaluation, and trimethylamine during spoilage are influenced by bacterial composition and free amino acid content. A mesophilic bacterial count of log 6-7 cfu/g has been found to be associated with 5 mg histamine/100 g fish, the Food and Drug Administration (FDA) maximum allowable histamine level. In vitro studies have shown the involvement of cadaverine and putrescine in the formation of nitrosamines, nitrosopiperidine (NPIP), and nitrosopyrrolidine (NPYR), respectively. In addition, impure salt, high temperature, and low pH enhance nitrosamine formation, whereas pure sodium chloride inhibits their formation. Understanding the relationships between biogenic amines and their involvement in the formation of nitrosamines could explain the mechanism of scombroid poisoning and assure the safety of many fish products.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Rapid Communications in Mass Spectrometry
                Rapid Comm Mass Spectrometry
                Wiley
                0951-4198
                1097-0231
                September 2023
                March 02 2023
                September 2023
                : 37
                : S1
                Affiliations
                [1 ] Department of Chemistry Illinois State University Normal IL USA
                [2 ] Chemistry Division, Research Department Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR) China Lake CA USA
                Article
                10.1002/rcm.9493
                744b1c1c-6b91-41ee-ae2f-be2ec491e167
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article