37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects ( n = 21; 18–29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats (‘wide-band’ theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Rhythmic Auditory Stimulation in Rehabilitation of Movement Disorders: A Review Of Current Research

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Body mass index as a predictor of percent fat in college athletes and nonathletes.

            Body mass index (BMI) is used as a surrogate for percent fat (% fat) in classifying obesity. However, there is no established criterion for % fat and health risk, and few studies have examined the accuracy/validity of BMI as a measure of % fat. By default, BMI is used to classify athletes and young adults as obese. Consequently, it is critical to understand the accuracy of BMI in these populations. The purposes of this study were 1) to describe the relationship between BMI and % fat, and 2) to determine the accuracy of BMI as a measure of % fat in college athletes and nonathletes. A total of 226 college-aged athletes and 213 college-aged nonathletes participated. Three male groups (athletes, football linemen, and nonathletes) and two female groups (athletes and nonathletes) were created. BMI was calculated. Percent fat was determined via BOD POD. BMI >or= 25 kg.m(-2) was used to define overweight. Twenty percent fat for males and 33% fat for females were used to define overfatness. Using % fat as the criterion, sensitivity and specificity of BMI were calculated. Receiver operator characteristic curves determined optimal BMI cut points for % fat. Sensitivity was high (0.83-1.0) and specificity was low (0.27-0.66) in male athletes, male nonathletes, and female athletes. Sensitivity was high in linemen (1.0). Sensitivity was low (0.56) and specificity was high (0.90) in female nonathletes. Optimal BMI cut points for male athletes, linemen, male nonathletes, female athletes, and female nonathletes were 27.9, 34.1, 26.5, 27.7, and 24.0 kg.m(-2), respectively. BMI should be used cautiously when classifying fatness in college athletes and nonathletes. Our results support the need for different BMI classifications of overweight in these populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load.

              The objective of this study was to establish the separate associations between parasympathetic modulations of the heart [evaluated through heart rate (HR) variability (HRV) indexes and postexercise HR recovery (HRR) indexes] with cardiorespiratory fitness and training load. We have measured cardiorespiratory fitness through peak oxygen consumption (Vo2 max) and estimated weekly training load with the Baecke sport score in 55 middle-aged individuals (30.8 +/- 1.8 yr, body mass index 24.5 +/- 0.4 kg/m2). HRV indexes were analyzed at rest under controlled breathing, and HRR was estimated from HR curve fitting after maximal exercise or from measurements of the number of beats recovered at 60 s after exercise. Multiple linear regressions were used to investigate the separate relationships between vagal-related HRV indexes and Vo2 max and Baecke scores. On the basis of their Vo2 max and Baecke scores, subjects were classified as fit or unfit and as low trained (LT) or moderately trained (MT), which yielded four groups: UnfitLT, UnfitMT, FitLT, and FitMT. Vagal-related HRV indexes were positively correlated with Vo2 max (P < 0.05) but not with Baecke scores. In contrast, HRR indexes were related to Baecke scores (P < 0.05) but not with Vo2 max. FitLT and FitMT had significantly higher (P < 0.05) normalized vagal-related HRV indexes than UnfitLT and UnfitMT, but HRR did not change. Moderate training was associated with significantly lower HRR indexes both in UnfitMT and FitMT compared with UnfitLT and FitLT, but there was no difference in vagal-related HRV indexes. These results indicate that vagal-related HRV indexes are related more to cardiorespiratory fitness, whereas HRR appears to be better associated with training load.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                14 November 2014
                2014
                : 5
                : 1248
                Affiliations
                [1] 1Department of Exercise and Sport Sciences, Ithaca College Ithaca, NY, USA
                [2] 2Department of Neurosciences, Medical University of South Carolina Charleston, SC, USA
                [3] 3College of Social Work and Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
                Author notes

                Edited by: Barbara Tomasino, University of Udine, Italy

                Reviewed by: Costantini Marcello, University of Chieti, Italy; Evin Aktar, University of Amsterdam, Netherlands

                *Correspondence: Patrick A. McConnell, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29403, USA e-mail: mcconnep@ 123456musc.edu

                This article was submitted to Cognition, a section of the journal Frontiers in Psychology.

                Article
                10.3389/fpsyg.2014.01248
                4231835
                25452734
                744cb131-cec7-4e86-a46f-1b63ffdb1d4a
                Copyright © 2014 McConnell, Froeliger, Garland, Ives and Sforzo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 August 2014
                : 14 October 2014
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 52, Pages: 10, Words: 0
                Categories
                Psychology
                Original Research Article

                Clinical Psychology & Psychiatry
                auditory driving,autonomic,binaural-beat,exercise,heart rate variability,relaxation

                Comments

                Comment on this article