73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The main genomic changes in the evolution of host-restricted microbial symbionts are ongoing inactivation and loss of genes combined with rapid sequence evolution and extreme structural stability; these changes reflect high levels of genetic drift due to small population sizes and strict clonality. This genomic erosion includes irreversible loss of genes in many functional categories and can include genes that underlie the nutritional contributions to hosts that are the basis of the symbiotic association. Candidatus Sulcia muelleri is an ancient symbiont of sap-feeding insects and is typically coresident with another bacterial symbiont that varies among host subclades. Previously sequenced Sulcia genomes retain pathways for the same eight essential amino acids, whereas coresident symbionts synthesize the remaining two. Here, we describe a dual symbiotic system consisting of Sulcia and a novel species of Betaproteobacteria, Candidatus Zinderia insecticola, both living in the spittlebug Clastoptera arizonana. This Sulcia has completely lost the pathway for the biosynthesis of tryptophan and, therefore, retains the ability to make only 7 of the 10 essential amino acids. Zinderia has a tiny genome (208 kb) and the most extreme nucleotide base composition (13.5% G + C) reported to date, yet retains the ability to make the remaining three essential amino acids, perfectly complementing capabilities of the coresident Sulcia. Combined with the results from related symbiotic systems with complete genomes, these data demonstrate the critical role that bacterial symbionts play in the host insect’s biology and reveal one outcome following the loss of a critical metabolic activity through genome reduction.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The genome sequence of Rickettsia prowazekii and the origin of mitochondria.

          We describe here the complete genome sequence (1,111,523 base pairs) of the obligate intracellular parasite Rickettsia prowazekii, the causative agent of epidemic typhus. This genome contains 834 protein-coding genes. The functional profiles of these genes show similarities to those of mitochondrial genes: no genes required for anaerobic glycolysis are found in either R. prowazekii or mitochondrial genomes, but a complete set of genes encoding components of the tricarboxylic acid cycle and the respiratory-chain complex is found in R. prowazekii. In effect, ATP production in Rickettsia is the same as that in mitochondria. Many genes involved in the biosynthesis and regulation of biosynthesis of amino acids and nucleosides in free-living bacteria are absent from R. prowazekii and mitochondria. Such genes seem to have been replaced by homologues in the nuclear (host) genome. The R. prowazekii genome contains the highest proportion of non-coding DNA (24%) detected so far in a microbial genome. Such non-coding sequences may be degraded remnants of 'neutralized' genes that await elimination from the genome. Phylogenetic analyses indicate that R. prowazekii is more closely related to mitochondria than is any other microbe studied so far.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deletional bias and the evolution of bacterial genomes.

            Although bacteria increase their DNA content through horizontal transfer and gene duplication, their genomes remain small and, in particular, lack nonfunctional sequences. This pattern is most readily explained by a pervasive bias towards higher numbers of deletions than insertions. When selection is not strong enough to maintain them, genes are lost in large deletions or inactivated and subsequently eroded. Gene inactivation and loss are particularly apparent in obligate parasites and symbionts, in which dramatic reductions in genome size can result not from selection to lose DNA, but from decreased selection to maintain gene functionality. Here we discuss the evidence showing that deletional bias is a major force that shapes bacterial genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial minimalism: genome reduction in bacterial pathogens.

              When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                2010
                09 September 2010
                2010
                09 September 2010
                : 2
                : 708-718
                Affiliations
                [1 ]Center for Insect Science, University of Arizona
                [2 ]Department of Ecology and Evolutionary Biology, University of Arizona
                []Present address: Division of Biological Sciences, University of Montana, Missoula, Montana 59812
                []Present address: Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520
                Author notes
                [* ]Corresponding author: E-mail: john.mccutcheon@ 123456umontana.edu .

                Associate editor: Ford Doolittle

                Data deposition: The Candidatus Sulcia muelleri and Candidatus Zinderia insecticola genomes have been deposited in GenBank with the accession numbers CP002163 and CP002161.

                Article
                10.1093/gbe/evq055
                2953269
                20829280
                744e86c2-4d65-4229-836b-beb2086c1d34
                © The Author(s) 2010. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 September 2010
                Categories
                Research Articles

                Genetics
                nutritional symbioses,genome sequencing,minimal genome,genome reduction,bacteroidetes
                Genetics
                nutritional symbioses, genome sequencing, minimal genome, genome reduction, bacteroidetes

                Comments

                Comment on this article