5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sorghum Growth Promotion by Paraburkholderia tropica and Herbaspirillum frisingense: Putative Mechanisms Revealed by Genomics and Metagenomics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria from the genera Paraburkholderia and Herbaspirillum can promote the growth of Sorghum bicolor, but the underlying mechanisms are not yet known. In a pot experiment, sorghum plants grown on sterilized substrate were inoculated with Paraburkholderia tropica strain IAC/BECa 135 and Herbaspirillum frisingense strain IAC/BECa 152 under phosphate-deficient conditions. These strains significantly increased Sorghum bicolor cultivar SRN-39 root and shoot biomass. Shotgun metagenomic analysis of the rhizosphere revealed successful colonization by both strains; however, the incidence of colonization was higher in plants inoculated with P. tropica strain IAC/BECa 135 than in those inoculated with H. frisingense strain IAC/BECa 152. Conversely, plants inoculated with H. frisingense strain IAC/BECa 152 showed the highest increase in biomass. Genomic analysis of the two inoculants implied a high degree of rhizosphere fitness of P. tropica strain IAC/BECa 135 through environmental signal processing, biofilm formation, and nutrient acquisition. Both genomes contained genes related to plant growth-promoting bacterial (PGPB) traits, including genes related to indole-3-acetate (IAA) synthesis, nitrogen fixation, nodulation, siderophore production, and phosphate solubilization, although the P. tropica strain IAC/BECa 135 genome contained a slightly more extensive repertoire. This study provides evidence that complementary mechanisms of growth promotion in Sorghum might occur, i.e., that P. tropica strain IAC/BECa 135 acts in the rhizosphere and increases the availability of nutrients, while H. frisingense strain IAC/BECa 152 influences plant hormone signaling. While the functional and taxonomic profiles of the rhizobiomes were similar in all treatments, significant differences in plant biomass were observed, indicating that the rhizobiome and the endophytic microbial community may play equally important roles in the complicated plant-microbial interplay underlying increased host plant growth.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Book: not found

          The water culture method of growing plants without soil

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant Growth-Promoting Bacteria: Mechanisms and Applications

            The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bracken: estimating species abundance in metagenomics data

              Metagenomic experiments attempt to characterize microbial communities using high-throughput DNA sequencing. Identification of the microorganisms in a sample provides information about the genetic profile, population structure, and role of microorganisms within an environment. Until recently, most metagenomics studies focused on high-level characterization at the level of phyla, or alternatively sequenced the 16S ribosomal RNA gene that is present in bacterial species. As the cost of sequencing has fallen, though, metagenomics experiments have increasingly used unbiased shotgun sequencing to capture all the organisms in a sample. This approach requires a method for estimating abundance directly from the raw read data. Here we describe a fast, accurate new method that computes the abundance at the species level using the reads collected in a metagenomics experiment. Bracken (Bayesian Reestimation of Abundance after Classification with KrakEN) uses the taxonomic assignments made by Kraken, a very fast read-level classifier, along with information about the genomes themselves to estimate abundance at the species level, the genus level, or above. We demonstrate that Bracken can produce accurate species- and genus-level abundance estimates even when a sample contains multiple near-identical species.
                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                13 May 2020
                May 2020
                : 8
                : 5
                : 725
                Affiliations
                [1 ]Netherlands Institute of Ecology (NIOO-KNAW), Microbial Ecology Department, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; stan.derksen.1997@ 123456outlook.com (S.D.); trschlemper@ 123456gmail.com (T.R.S.); m.dimitrov@ 123456nioo.knaw.nl (M.R.D.); o.costa@ 123456nioo.knaw.nl (O.Y.A.C.)
                [2 ]Utrecht University, Institute of Environmental Biology, Ecology and biodiversity, 3508 TC Utrecht, The Netherlands
                [3 ]Center of Soil and Environmental Resources, Agronomic Institute of Campinas (IAC), Av. Barão de Itapura 1481, 13020-902 Campinas, Brazil
                Author notes
                [* ]Correspondence: e.kuramae@ 123456nioo.knaw.nl (E.E.K.); apdsil@ 123456iac.sp.gov.br (A.P.D.d.S.)
                Author information
                https://orcid.org/0000-0001-6701-8668
                Article
                microorganisms-08-00725
                10.3390/microorganisms8050725
                7285511
                32414048
                745a2068-b4b6-4529-8a35-ce4233bac7d1
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 March 2020
                : 11 May 2020
                Categories
                Article

                plant growth-promoting rhizobacteria,signal processing,biofilm,nutrient acquisition,comparative genomics,paraburkholderia tropica,herbaspirillum frisingense

                Comments

                Comment on this article