1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Three-dimensional genome reorganization during mouse spermatogenesis

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three-dimensional genome organization plays an important role in many biological processes. Yet, how the genome is packaged at the molecular level during mammalian spermatogenesis remains unclear. Here, we performed Hi-C in seven sequential stages during mouse spermatogenesis. We found that topological associating domains (TADs) and chromatin loops underwent highly dynamic reorganization. They displayed clear existence in primitive type A spermatogonia, disappearance at pachytene stage, and reestablishment in spermatozoa. Surprisingly, even in the absence of TADs and chromatin loops at pachytene stage, CTCF remained bound at TAD boundary regions (identified in primitive type A spermatogonia). Additionally, many enhancers and promoters exhibited features of open chromatin and transcription remained active at pachytene stage. A/B compartmentalization and segmentation ratio were conserved in different stages of spermatogenesis in autosomes, although there were A/B compartment switching events correlated with gene activity changes. Intriguingly, A/B compartment structure on the X chromosome disappeared during pacSC, rST and eST stages. Together, our work uncovered a dynamic three-dimensional chromatin organization during mouse spermatogenesis and suggested that transcriptional regulation could be independent of TADs and chromatin loops at specific developmental stages.

          Related collections

          Author and article information

          Journal
          bioRxiv
          March 21 2019
          Article
          10.1101/585281
          74728453-5aa0-4f5e-9ce8-6d45335698ab
          © 2019
          History

          Human biology,Genetics
          Human biology, Genetics

          Comments

          Comment on this article