13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structure of the nuclear exosome captured on a maturing preribosome

      , , , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The RNA exosome complex processes and degrades a wide range of transcripts, including ribosomal RNAs. We used cryo-EM to visualize the yeast nuclear exosome holo-complex captured on a precursor large ribosomal subunit (pre-60S) during 7S-to-5.8S rRNA processing. The cofactors of the nuclear exosome are sandwiched between the ribonuclease core complex (Exo-10) and the remodeled "foot" structure of the pre-60S particle, which harbors the 5.8S rRNA precursor. The exosome-associated helicase Mtr4 recognizes the preribosomal substrate by docking to specific sites on the 25S rRNA, captures the 3' extension of the 5.8S rRNA, and channels it toward Exo-10. The structure elucidates how the exosome forms a structural and functional unit together with its massive pre-60S substrate to process rRNA during ribosome maturation.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Ribosome biogenesis in the yeast Saccharomyces cerevisiae.

          Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors.

            Mature ribosomal RNAs (rRNAs) are produced from polycistronic precursors following complex processing. Precursor (pre)-rRNA processing has been extensively characterized in yeast and was assumed to be conserved in humans. We functionally characterized 625 nucleolar proteins in HeLa cells and identified 286 required for processing, including 74 without a yeast homolog. For selected candidates, we demonstrated that pre-rRNA processing defects are conserved in different cell types (including primary cells), defects are not due to activation of a p53-dependent nucleolar tumor surveillance pathway, and they precede cell-cycle arrest and apoptosis. We also investigated the exosome's role in processing internal transcribed spacers (ITSs) and report that 3' end maturation of 18S rRNA involves EXOSC10/Rrp6, a yeast ITS2 processing factor. We conclude that human cells adopt unique strategies and recruit distinct trans-acting factors to carry out essential processing steps, posing fundamental implications for understanding ribosomopathies at the molecular level and developing effective therapeutic agents. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The regulation and functions of the nuclear RNA exosome complex.

              The RNA exosome complex is the most versatile RNA-degradation machine in eukaryotes. The exosome has a central role in several aspects of RNA biogenesis, including RNA maturation and surveillance. Moreover, it is emerging as an important player in regulating the expression levels of specific mRNAs in response to environmental cues and during cell differentiation and development. Although the mechanisms by which RNA is targeted to (or escapes from) the exosome are still not fully understood, general principles have begun to emerge, which we discuss in this Review. In addition, we introduce and discuss novel, previously unappreciated functions of the nuclear exosome, including in transcription regulation and in the maintenance of genome stability.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                April 12 2018
                April 13 2018
                April 13 2018
                March 08 2018
                : 360
                : 6385
                : 219-222
                Article
                10.1126/science.aar5428
                29519915
                74746ffe-028d-4f5a-91fb-d32b2a6c3ace
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article