32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Cre recombinase models for the study of adipose tissue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study of adipose tissue in vivo has been significantly advanced through the use of genetic mouse models. While the aP2-Cre BI and aP2-Cre Salk lines have been widely used to target adipose tissue, the specificity of these lines for adipocytes has recently been questioned. Here we characterize Cre recombinase activity in multiple cell populations of the major adipose tissue depots of these and other Cre lines using the membrane-Tomato/membrane-GFP (mT/mG) dual fluorescent reporter. We find that the aP2-Cre BI and aP2-Cre Salk lines lack specificity for adipocytes within adipose tissue, and that the aP2-Cre BI line does not efficiently target adipocytes in white adipose depots. Alternatively, the Adiponectin-CreERT line shows high efficiency and specificity for adipocytes, while the PdgfRα-CreERUCL and PdgfRα-CreERJHU lines do not efficiently target adipocyte precursor cells in the major adipose depots. Instead, we show that the PdgfRα-Cre line is preferable for studies targeting adipocyte precursor cells in vivo.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Adipocytes as regulators of energy balance and glucose homeostasis.

          Adipocytes have been studied with increasing intensity as a result of the emergence of obesity as a serious public health problem and the realization that adipose tissue serves as an integrator of various physiological pathways. In particular, their role in calorie storage makes adipocytes well suited to the regulation of energy balance. Adipose tissue also serves as a crucial integrator of glucose homeostasis. Knowledge of adipocyte biology is therefore crucial for understanding the pathophysiological basis of obesity and metabolic diseases such as type 2 diabetes. Furthermore, the rational manipulation of adipose physiology is a promising avenue for therapy of these conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct fibroblast lineages determine dermal architecture in skin development and repair

            Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibers of the extracellular matrix (ECM) 1 . Even within a single tissue fibroblasts exhibit remarkable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle (APM), which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesise the bulk of the fibrillar ECM, and the pre-adipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialisation. Epidermal beta-catenin activation stimulates expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles 2-4 . They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver.

              The earliest defect in developing type 2 diabetes is insulin resistance, characterized by decreased glucose transport and metabolism in muscle and adipocytes. The glucose transporter GLUT4 mediates insulin-stimulated glucose uptake in adipocytes and muscle by rapidly moving from intracellular storage sites to the plasma membrane. In insulin-resistant states such as obesity and type 2 diabetes, GLUT4 expression is decreased in adipose tissue but preserved in muscle. Because skeletal muscle is the main site of insulin-stimulated glucose uptake, the role of adipose tissue GLUT4 downregulation in the pathogenesis of insulin resistance and diabetes is unclear. To determine the role of adipose GLUT4 in glucose homeostasis, we used Cre/loxP DNA recombination to generate mice with adipose-selective reduction of GLUT4 (G4A-/-). Here we show that these mice have normal growth and adipose mass despite markedly impaired insulin-stimulated glucose uptake in adipocytes. Although GLUT4 expression is preserved in muscle, these mice develop insulin resistance in muscle and liver, manifested by decreased biological responses and impaired activation of phosphoinositide-3-OH kinase. G4A-/- mice develop glucose intolerance and hyperinsulinaemia. Thus, downregulation of GLUT4 and glucose transport selectively in adipose tissue can cause insulin resistance and thereby increase the risk of developing diabetes.
                Bookmark

                Author and article information

                Journal
                Adipocyte
                Adipocyte
                ADIP
                Adipocyte
                Landes Bioscience
                2162-3945
                2162-397X
                01 July 2014
                27 June 2014
                27 June 2014
                : 3
                : 3
                : 206-211
                Affiliations
                [1 ]Department of Cell Biology; Yale University; New Haven, CT USA
                [2 ]Department of Molecular, Cell and Developmental Biology; Yale University; New Haven, CT USA
                [3 ]Section of Comparative Medicine; Yale University; New Haven, CT USA
                [4 ]Department of Pediatrics; Children’s Memorial Research Center; Northwestern University Feinberg School of Medicine; Chicago, IL USA
                [5 ]Yale Stem Cell Center; Yale University; New Haven, CT USA
                [6 ]Division of Endocrinology; Beth Israel Deaconess Medical Center; Boston, MA USA
                [7 ]Harvard Medical School; Boston, MA USA
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Correspondence to: Matthew S Rodeheffer, Email: matthew.rodeheffer@ 123456yale.edu
                Article
                2014ADIPOCYTE206R 29674
                10.4161/adip.29674
                4110097
                25068087
                7474e305-eda6-4408-a6c0-6911022abacd
                Copyright © 2014 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 02 June 2014
                : 20 June 2014
                : 20 June 2014
                Categories
                Research Paper

                cre recombinase,adipocyte,adipocyte stem cell,lineage tracing,mouse model

                Comments

                Comment on this article