10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fungal Polyketide Synthase Product Chain-Length Control by Partnering Thiohydrolase

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fungal highly reducing polyketide synthases (HRPKSs) are an enigmatic group of multidomain enzymes that catalyze the biosynthesis of structurally diverse compounds. This variety stems from their intrinsic programming rules, which permutate the use of tailoring domains and determine the overall number of iterative cycles. From genome sequencing and mining of the producing strain Eupenicillium brefeldianum ATCC 58665, we identified an HRPKS involved in the biosynthesis of an important protein transport-inhibitor Brefeldin A (BFA), followed by reconstitution of its activity in Saccharomyces cerevisiae and in vitro. Bref-PKS demonstrated an NADPH-dependent reductive tailoring specificity that led to the synthesis of four different octaketide products with varying degrees of reduction. Furthermore, contrary to what is expected from the structure of BFA, Bref-PKS is found to be a nonaketide synthase in the absence of an associated thiohydrolase Bref-TH. Such chain-length control by the partner thiohydrolase was found to be present in other HRPKS systems and highlights the importance of including tailoring enzyme activities in predicting fungal HRPKS functions and their products.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites.

          We describe the production of new alleles of the LEU2, URA3 and TRP1 genes of Saccharomyces cerevisiae by in vitro mutagenesis. Each new allele, which lacks restriction enzyme recognition sequences found in the pUC19 multicloning site, was used to construct a unique series of yeast-Escherichia coli shuttle vectors derived from the plasmid pUC19. For each gene a 2 mu vector (YEplac), an ARS1 CEN4 vector (YCplac) and an integrative vector (YIplac) was constructed. The features of these vectors include (i) small size; (ii) unique recognition site for each restriction enzyme found in the pUC19 multicloning site; (iii) screening for plasmids containing inserts by color assay; (iv) high plasmid yield; (v) efficient transformation of S. cerevisiae. These vectors should allow greater flexibility with regard to DNA restriction fragment manipulation and subcloning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The alpha/beta hydrolase fold.

            We have identified a new protein fold--the alpha/beta hydrolase fold--that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta sheet, not barrel, of eight beta-sheets connected by alpha-helices. These enzymes have diverged from a common ancestor so as to preserve the arrangement of the catalytic residues, not the binding site. They all have a catalytic triad, the elements of which are borne on loops which are the best-conserved structural features in the fold. Only the histidine in the nucleophile-histidine-acid catalytic triad is completely conserved, with the nucleophile and acid loops accommodating more than one type of amino acid. The unique topological and sequence arrangement of the triad residues produces a catalytic triad which is, in a sense, a mirror-image of the serine protease catalytic triad. There are now four groups of enzymes which contain catalytic triads and which are related by convergent evolution towards a stable, useful active site: the eukaryotic serine proteases, the cysteine proteases, subtilisins and the alpha/beta hydrolase fold enzymes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complete reconstitution of a highly reducing iterative polyketide synthase.

              Highly reducing iterative polyketide synthases are large, multifunctional enzymes that make important metabolites in fungi, such as lovastatin, a cholesterol-lowering drug from Aspergillus terreus. We report efficient expression of the lovastatin nonaketide synthase (LovB) from an engineered strain of Saccharomyces cerevisiae, as well as complete reconstitution of its catalytic function in the presence and absence of cofactors (the reduced form of nicotinamide adenine dinucleotide phosphate and S-adenosylmethionine) and its partner enzyme, the enoyl reductase LovC. Our results demonstrate that LovB retains correct intermediates until completion of synthesis of dihydromonacolin L, but off-loads incorrectly processed compounds as pyrones or hydrolytic products. Experiments replacing LovC with analogous MlcG from compactin biosynthesis demonstrate a gate-keeping function for this partner enzyme. This study represents a key step in the understanding of the functions and structures of this family of enzymes.
                Bookmark

                Author and article information

                Journal
                ACS Chem Biol
                ACS Chem. Biol
                cb
                acbcct
                ACS Chemical Biology
                American Chemical Society
                1554-8929
                1554-8937
                20 May 2015
                20 May 2014
                18 July 2014
                : 9
                : 7
                : 1576-1586
                Affiliations
                [99] Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
                [§ ]Research School of Biology, Australian National University , Canberra, ACT 0200, Australia
                Author notes
                Article
                10.1021/cb500284t
                4215887
                24845309
                747c9749-5506-4135-aec2-9f95cc6671dd
                Copyright © 2014 American Chemical Society

                Terms of Use

                History
                : 18 April 2014
                : 20 May 2014
                Funding
                National Institutes of Health, United States
                Categories
                Articles
                Custom metadata
                cb500284t
                cb-2014-00284t

                Biochemistry
                Biochemistry

                Comments

                Comment on this article