30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of a novel molecular TB diagnostic system in patients at high risk of TB mortality in rural South Africa (Uchwepheshe): study protocol for a cluster randomised trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tuberculosis control in sub-Saharan Africa has long been hampered by poor diagnostics and weak health systems. New molecular diagnostics, such as the Xpert® MTB/RIF assay, have the potential to improve patient outcomes. We present a cluster randomised trial designed to evaluate whether the positioning of this diagnostic system within the health system has an impact on important patient-level outcomes.

          Methods/Design

          This pragmatic cluster randomised clinical trial compared two positioning strategies for the Xpert MTB/RIF system: centralised laboratory versus primary health care clinic. The cluster (unit of randomisation) is a 2-week time block at the trial clinic. Adult pulmonary tuberculosis suspects with confirmed human immunodeficiency virus infection and/or at high risk of multidrug-resistant tuberculosis are enrolled from the primary health care clinic. The primary outcome measure is the proportion of culture-confirmed pulmonary tuberculosis cases initiated on appropriate treatment within 30 days of initial clinic visit. Univariate logistic regression will be performed as the primary analysis using generalised estimating equations with a binomial distribution function and a logit link.

          Conclusion

          Diagnostic research tends to focus only on performance of diagnostic tests rather than on patient-important outcomes. This trial has been designed to improve the quality of evidence around diagnostic strategies and to inform the scale-up of new tuberculosis diagnostics within public health systems in high-burden settings.

          Trial registration

          Current Controlled Trials ISRCTN18642314; South African National Clinical Trials Registry DOH-27-0711-3568.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis.

          Although progress has been made to reduce global incidence of drug-susceptible tuberculosis, the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis during the past decade threatens to undermine these advances. However, countries are responding far too slowly. Of the estimated 440,000 cases of MDR tuberculosis that occurred in 2008, only 7% were identified and reported to WHO. Of these cases, only a fifth were treated according to WHO standards. Although treatment of MDR and XDR tuberculosis is possible with currently available diagnostic techniques and drugs, the treatment course is substantially more costly and laborious than for drug-susceptible tuberculosis, with higher rates of treatment failure and mortality. Nonetheless, a few countries provide examples of how existing technologies can be used to reverse the epidemic of MDR tuberculosis within a decade. Major improvements in laboratory capacity, infection control, performance of tuberculosis control programmes, and treatment regimens for both drug-susceptible and drug-resistant disease will be needed, together with a massive scale-up in diagnosis and treatment of MDR and XDR tuberculosis to prevent drug-resistant strains from becoming the dominant form of tuberculosis. New diagnostic tests and drugs are likely to become available during the next few years and should accelerate control of MDR and XDR tuberculosis. Equally important, especially in the highest-burden countries of India, China, and Russia, will be a commitment to tuberculosis control including improvements in national policies and health systems that remove financial barriers to treatment, encourage rational drug use, and create the infrastructure necessary to manage MDR tuberculosis on a national scale. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities.

            With an estimated 9.4 million new cases globally, tuberculosis (TB) continues to be a major public health concern. Eighty percent of all cases worldwide occur in 22 high-burden, mainly resource-poor settings. This devastating impact of tuberculosis on vulnerable populations is also driven by its deadly synergy with HIV. Therefore, building capacity and enhancing universal access to rapid and accurate laboratory diagnostics are necessary to control TB and HIV-TB coinfections in resource-limited countries. The present review describes several new and established methods as well as the issues and challenges associated with implementing quality tuberculosis laboratory services in such countries. Recently, the WHO has endorsed some of these novel methods, and they have been made available at discounted prices for procurement by the public health sector of high-burden countries. In addition, international and national laboratory partners and donors are currently evaluating other new diagnostics that will allow further and more rapid testing in point-of-care settings. While some techniques are simple, others have complex requirements, and therefore, it is important to carefully determine how to link these new tests and incorporate them within a country's national diagnostic algorithm. Finally, the successful implementation of these methods is dependent on key partnerships in the international laboratory community and ensuring that adequate quality assurance programs are inherent in each country's laboratory network.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIV infection and tuberculosis in South Africa: an urgent need to escalate the public health response.

              One of the greatest challenges facing post-apartheid South Africa is the control of the concomitant HIV and tuberculosis epidemics. HIV continues to spread relentlessly, and tuberculosis has been declared a national emergency. In 2007, South Africa, with 0.7% of the world's population, had 17% of the global burden of HIV infection, and one of the world's worst tuberculosis epidemics, compounded by rising drug resistance and HIV co-infection. Until recently, the South African Government's response to these diseases has been marked by denial, lack of political will, and poor implementation of policies and programmes. Nonetheless, there have been notable achievements in disease management, including substantial improvements in access to condoms, expansion of tuberculosis control efforts, and scale-up of free antiretroviral therapy (ART). Care for acutely ill AIDS patients and long-term provision of ART are two issues that dominate medical practice and the health-care system. Decisive action is needed to implement evidence-based priorities for the control of the HIV and tuberculosis epidemics. By use of the framework of the Strategic Plans for South Africa for tuberculosis and HIV/AIDS, we provide prioritised four-step approaches for tuberculosis control, HIV prevention, and HIV treatment. Strong leadership, political will, social mobilisation, adequate human and financial resources, and sustainable development of health-care services are needed for successful implementation of these approaches.
                Bookmark

                Author and article information

                Journal
                Trials
                Trials
                Trials
                BioMed Central
                1745-6215
                2013
                12 June 2013
                : 14
                : 170
                Affiliations
                [1 ]Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
                [2 ]Africa Centre for Health and Population Studies, University of KwaZulu-Natal, Mtubatuba, South Africa
                [3 ]Department of Infectious Disease, Imperial College, London, UK
                [4 ]Academic Unit of Primary Care and Population Sciences and Academic Unit of Social Sciences, University of Southampton, Southampton, UK
                [5 ]Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
                [6 ]UCL Institute of Child Health, London, UK
                Article
                1745-6215-14-170
                10.1186/1745-6215-14-170
                3686680
                23758662
                7482fc43-ce4a-4b17-97eb-8493b718bab1
                Copyright ©2013 Lessells et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 February 2013
                : 28 May 2013
                Categories
                Study Protocol

                Medicine
                tuberculosis,multidrug-resistant tuberculosis,hiv,molecular diagnostics,point-of-care systems,clinical trial

                Comments

                Comment on this article