26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multimode circuit optomechanics near the quantum limit

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states.

          Abstract

          Optomechanical systems allow for the exploration of macroscopic behaviour at or near the quantum limit. Massel et al. use micromechanical resonators to study the hybridisation of one photonic and two phononic modes with phonon numbers down to 1.8, showing a coupling between all three degrees of freedom.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Laser cooling of a nanomechanical oscillator into its quantum ground state

          A patterned Si nanobeam is formed which supports co-localized acoustic and optical resonances that are coupled via radiation pressure. Starting from a bath temperature of T=20K, the 3.68GHz nanomechanical mode is cooled into its quantum mechanical ground state utilizing optical radiation pressure. The mechanical mode displacement fluctuations, imprinted on the transmitted cooling laser beam, indicate that a final phonon mode occupancy of 0.85 +-0.04 is obtained.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sideband Cooling Micromechanical Motion to the Quantum Ground State

            The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cavity cooling of a microlever.

              The prospect of realizing entangled quantum states between macroscopic objects and photons has recently stimulated interest in new laser-cooling schemes. For example, laser-cooling of the vibrational modes of a mirror can be achieved by subjecting it to a radiation or photothermal pressure, actively controlled through a servo loop adjusted to oppose its brownian thermal motion within a preset frequency window. In contrast, atoms can be laser-cooled passively without such active feedback, because their random motion is intrinsically damped through their interaction with radiation. Here we report direct experimental evidence for passive (or intrinsic) optical cooling of a micromechanical resonator. We exploit cavity-induced photothermal pressure to quench the brownian vibrational fluctuations of a gold-coated silicon microlever from room temperature down to an effective temperature of 18 K. Extending this method to optical-cavity-induced radiation pressure might enable the quantum limit to be attained, opening the way for experimental investigations of macroscopic quantum superposition states involving numbers of atoms of the order of 10(14).
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                07 August 2012
                : 3
                : 987
                Affiliations
                [1 ]simpleLow Temperature Laboratory, Aalto University School of Science , P.O. Box 15100, FI-00076 Espoo, Finland
                [2 ]Present address: Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea
                [3 ]Present address: Department of Applied Physics, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto, Finland
                Author notes
                Article
                ncomms1993
                10.1038/ncomms1993
                3432470
                22871806
                74917de2-2bab-431c-9dee-166cc224e3ad
                Copyright © 2012, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 04 May 2012
                : 06 July 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article