+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Rapid, Convergent Approach to the Identification of Exosome Inhibitors in Breast Cancer Models


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Targeting cancer cell exosome release and biogenesis represents a potentially efficient means to treat tumors and prevent cancer recurrence/metastasis; however, the complexity and time-consuming nature of currently employed methods to purify and characterize exosomes represent obstacles to progression. Herein, we describe a rapid, convergent, and cost-efficient strategy to analyze candidate U.S. Food and Drug Administration (FDA)-approved drugs that inhibit exosome release and/or biogenesis using breast cancer cell line models in the hope of repurposing them for the clinical treatment of metastatic tumors. We combined the ExoScreen assay based on AlphaScreen TM technology with the antibody-mediated detection of an atypical lipid (lysobisphosphatidic acid - LBPA) present in the intra-luminal vesicle/exosomal fraction to achieve both extracellular and intracellular information on exosome modulation after treatment. As proof of concept for this strategy, we identified docetaxel, biscurcumin, primaquine, and doxorubicin as potential exosome release inhibitors in the Her-2 positive MDA-MB-453 and luminal A MCF7 cell lines. Dinaciclib also functioned as an exosome release inhibitor in MCF7 cells. Further, we explored the expression of proteins involved in exosome biogenesis (TSG101, CD9 tetraspanin, Alix, SMase2) and release (Rab11, Rab27) to decipher and validate the possible molecular mechanisms of action of the identified exosome inhibitors. We anticipate that our approach could help to create robust high-throughput screening methodologies to accelerate drug repurposing when using FDA-approved compound libraries and to develop rationally-designed single/combination therapies (including nanomedicines) that can target metastasis progression by modulating exosome biogenesis or release in various tumor types.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.

          In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.
            • Record: found
            • Abstract: found
            • Article: not found

            Drug repurposing: progress, challenges and recommendations

            Given the high attrition rates, substantial costs and slow pace of new drug discovery and development, repurposing of 'old' drugs to treat both common and rare diseases is increasingly becoming an attractive proposition because it involves the use of de-risked compounds, with potentially lower overall development costs and shorter development timelines. Various data-driven and experimental approaches have been suggested for the identification of repurposable drug candidates; however, there are also major technological and regulatory challenges that need to be addressed. In this Review, we present approaches used for drug repurposing (also known as drug repositioning), discuss the challenges faced by the repurposing community and recommend innovative ways by which these challenges could be addressed to help realize the full potential of drug repurposing.
              • Record: found
              • Abstract: found
              • Article: not found

              Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.

              Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies.

                Author and article information

                Ivyspring International Publisher (Sydney )
                1 January 2023
                : 7
                : 1
                : 1-21
                Polymer Therapeutics Lab., Prince Felipe Research Center (CIPF), C. Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
                Author notes
                ✉ Corresponding author: E-mail: zandreu@ 123456fivo.org and mjvicent@ 123456cipf.es . Phone: +34963289680 (Ext2307#).

                Competing Interests: The authors have declared that no competing interest exists.

                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                Research Paper

                exosomes,exoscreen,lbpa,tumor microenvironment
                exosomes, exoscreen, lbpa, tumor microenvironment


                Comment on this article