1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative FISH mapping of ribosomal DNA clusters and TTAGG telomeric sequences to holokinetic chromosomes of eight species of the insect order Psocoptera

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Repetitive DNAs are the main components of eukaryotic genome. We mapped the 18S rDNA and TTAGG telomeric probe sequences by FISH to meiotic chromosomes of eight species of the order Psocoptera considered a basal taxon of Paraneoptera : Valenzuela burmeisteri (Brauer, 1876), Stenopsocus lachlani Kolbe, 1960, Graphopsocus cruciatus (Linnaeus, 1768), Peripsocus phaeopterus (Stephens, 1836), Philotarsus picicornis (Fabricius, 1793), Amphigerontia bifasciata (Latreille, 1799), Psococerastis gibbosa (Sulzer, 1766), and Metylophorus nebulosus (Stephens, 1836). These species belong to five distantly related families of the largest psocid suborder Psocomorpha : Caeciliusidae , Stenopsocidae , Peripsocidae , Philotarsidae , and Psocidae . We show that all the examined species share a similar location of 18S rDNA on a medium-sized pair of autosomes. This is the first study of rDNA clusters in the order Psocoptera using FISH. We also demonstrate that these species have the classical insect (TTAGG) n telomere organization. Our results provide a foundation for further cytogenetic characterization and chromosome evolution studies in Psocoptera .

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera).

          In this paper, we determine by fluorescent in situ hybridization the variability in the chromosomal location of 45S rDNA clusters in 38 species belonging to 7 genera of the Triatominae subfamily, using a triatomine-specific 18S rDNA probe. Our results show a striking variability at the inter- and intraspecific level, never reported so far in holocentric chromosomes, revealing the extraordinary genomic dynamics that occurred during the evolution in this group of insects. Our results also demonstrate that the chromosomal position of rDNA clusters is an important marker to disclose chromosomal differentiation in species karyotypically homogenous in their chromosome number. Copyright © 2012 S. Karger AG, Basel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenetic distribution of TTAGG telomeric repeats in insects.

            We examined the presence of TTAGG telomeric repeats in 22 species from 20 insect orders with no or inconclusive information on the telomere composition by single-primer polymerase chain reaction with (TTAGG)6 primers, Southern hybridization of genomic DNAs, and fluorescence in situ hybridization of chromosomes with (TTAGG)n probes. The (TTAGG)n sequence was present in 15 species and absent in 7 species. In a compilation of new and published data, we combined the distribution of (TTAGG)n telomere motif with the insect phylogenetic tree. The pattern of phylogenetic distribution of the TTAGG repeats clearly supported a hypothesis that the sequence was an ancestral motif of insect telomeres but was lost repeatedly during insect evolution. The motif was conserved in the "primitive" apterous insect orders, the Archaeognatha and Zygentoma, in the "lower" Neoptera (Plecoptera, Phasmida, Orthoptera, Blattaria, Mantodea, and Isoptera) with the exception of Dermaptera, and in Paraneoptera (Psocoptera, Thysanoptera, Auchenorrhyncha, and Sternorrhyncha) with the exception of Heteroptera. Surprisingly, the (TTAGG)n motif was not found in the "primitive" pterygotes, the Palaeoptera (Ephemeroptera and Odonata). The Endopterygota were heterogeneous for the occurrence of TTAGG repeats. The motif was conserved in Hymenoptera, Lepidoptera, and Trichoptera but was lost in one clade formed by Diptera, Siphonaptera, and Mecoptera. It was also lost in Raphidioptera, whereas it was present in Megaloptera. In contrast with previous authors, we did not find the motif in Neuroptera. Finally, both TTAGG-positive and TTAGG-negative species were reported in Coleoptera. The repeated losses of TTAGG in different branches of the insect phylogenetic tree and, in particular, in the most successful lineage of insect evolution, the Endopterygota, suggest a backup mechanism in the genome of insects that enabled them frequent evolutionary changes in telomere composition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGG) n repeat in eight species of true bugs (Hemiptera, Heteroptera)

              Abstract Eight species belonging to five true bug families were analyzed using DAPI/CMA3-staining and fluorescence in situ hybridization (FISH) with telomeric (TTAGG)n and 18S rDNA probes. Standard chromosomal complements are reported for the first time for Deraeocoris rutilus (Herrich-Schäffer, 1838) (2n=30+2m+XY) and Deraeocoris ruber (Linnaeus, 1758) (2n=30+2m+XY) from the family Miridae. Using FISH, the location of a 18S rDNA cluster was detected in these species and in five more species: Megaloceroea recticornis (Geoffroy, 1785) (2n=30+XY) from the Miridae; Oxycarenus lavaterae (Fabricius, 1787) (2n=14+2m+XY) from the Lygaeidae s.l.; Pyrrhocoris apterus (Linnaeus, 1758) (2n=22+X) from the Pyrrhocoridae; Eurydema oleracea (Linnaeus, 1758) (2n=12+XY) and Graphosoma lineatum (Linnaeus, 1758) (2n=12+XY) from the Pentatomidae. The species were found to differ with respect to location of a 18S rRNA gene cluster which resides on autosomes in Oxycarenus lavaterae and Pyrrhocoris apterus , whereas it locates on sex chromosomes in other five species. The 18S rDNA location provides the first physical landmark of the genomes of the species studied. The insect consensus telomeric pentanucleotide (TTAGG)n was demonstrated to be absent in all the species studied in this respect, Deraeocoris rutilus , Megaloceroea recticornis , Cimex lectularius Linnaeus, 1758 (Cimicidae), Eurydema oleracea , and Graphosoma lineatum , supporting the hypothesis that this motif was lost in early evolution of the Heteroptera and secondarily replaced with another motif (yet unknown) or the alternative telomerase-independent mechanisms of telomere maintenance. Dot-blot hybridization analysis of the genomic DNA from Cimex lectularius , Nabis sp. and Oxycarenus lavaterae with (TTAGG)n and six other telomeric probes likewise provided a negative result.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comp Cytogenet
                Comp Cytogenet
                8
                urn:lsid:arphahub.com:pub:A71ED5FC-60ED-5DA3-AC8E-F6D2BB5B3573
                urn:lsid:zoobank.org:pub:C8FA3ADA-5585-4F26-9215-A520EE683979
                Comparative Cytogenetics
                Pensoft Publishers
                1993-0771
                1993-078X
                2019
                06 December 2019
                : 13
                : 4
                : 403-410
                Affiliations
                [1 ] Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia Zoological Institute, Russian Academy of Sciences St. Petersburg Russia
                Author notes
                Corresponding author: Natalia Golub ( nvgolub@ 123456mail.ru )

                Academic editor: V. Gokhman

                Article
                48891
                10.3897/CompCytogen.v13i4.48891
                6910881
                Natalia Golub, Boris Anokhin, Valentina Kuznetsova

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Categories
                Short Communication
                Animalia
                Arthropoda
                Caeciliusidae
                Hexapoda
                Insecta
                Invertebrata
                Peripsocidae
                Philotarsidae
                Psocidae
                Psocomorpha
                Psocoptera
                Stenopsocidae
                Karyosystematics
                Molecular Cytogenetics
                Eastern Europe
                Europe
                Russia

                Comments

                Comment on this article