30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rab5c promotes AMAP1–PRKD2 complex formation to enhance β1 integrin recycling in EGF-induced cancer invasion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          EGF signaling activates Rab5c and promotes the intracellular association of AMAP1 and PRKD2 to enhance β1 integrin recycling and promote the invasiveness of breast cancer cells.

          Abstract

          Epidermal growth factor receptor (EGFR) signaling is one of the crucial factors in breast cancer malignancy. Breast cancer cells often overexpress Arf6 and its effector, AMAP1/ASAP1/DDEF1; in these cells, EGFR signaling may activate the Arf6 pathway to induce invasion and metastasis. Active recycling of some integrins is crucial for invasion and metastasis. Here, we show that the Arf6–AMAP1 pathway links to the machinery that recycles β1 integrins, such as α3β1, to promote cell invasion upon EGFR stimulation. We found that AMAP1 had the ability to bind directly to PRKD2 and hence to make a complex with the cytoplasmic tail of the β1 subunit. Moreover, GTP-Rab5c also bound to AMAP1, and activation of Rab5c by EGFR signaling was necessary to promote the intracellular association of AMAP1 and PRKD2. Our results suggest a novel mechanism by which EGFR signaling promotes the invasiveness of some breast cancer cells via integrin recycling.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Oncogenic kinase signalling.

          Protein-tyrosine kinases (PTKs) are important regulators of intracellular signal-transduction pathways mediating development and multicellular communication in metazoans. Their activity is normally tightly controlled and regulated. Perturbation of PTK signalling by mutations and other genetic alterations results in deregulated kinase activity and malignant transformation. The lipid kinase phosphoinositide 3-OH kinase (PI(3)K) and some of its downstream targets, such as the protein-serine/threonine kinases Akt and p70 S6 kinase (p70S6K), are crucial effectors in oncogenic PTK signalling. This review emphasizes how oncogenic conversion of protein kinases results from perturbation of the normal autoinhibitory constraints on kinase activity and provides an update on our knowledge about the role of deregulated PI(3)K/Akt and mammalian target of rapamycin/p70S6K signalling in human malignancies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells.

            Many proteins associated with the plasma membrane are known to partition into submicroscopic sphingolipid- and cholesterol-rich domains called lipid rafts, but the determinants dictating this segregation of proteins in the membrane are poorly understood. We suppressed the tendency of Aequorea fluorescent proteins to dimerize and targeted these variants to the plasma membrane using several different types of lipid anchors. Fluorescence resonance energy transfer measurements in living cells revealed that acyl but not prenyl modifications promote clustering in lipid rafts. Thus the nature of the lipid anchor on a protein is sufficient to determine submicroscopic localization within the plasma membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments

              Here we show that blocking the adhesive function of αvβ3 integrin with soluble RGD ligands, such as osteopontin or cilengitide, promoted association of Rab-coupling protein (RCP) with α5β1 integrin and drove RCP-dependent recycling of α5β1 to the plasma membrane and its mobilization to dynamic ruffling protrusions at the cell front. These RCP-driven changes in α5β1 trafficking led to acquisition of rapid/random movement on two-dimensional substrates and to a marked increase in fibronectin-dependent migration of tumor cells into three-dimensional matrices. Recycling of α5β1 integrin did not affect its regulation or ability to form adhesive bonds with substrate fibronectin. Instead, α5β1 controlled the association of EGFR1 with RCP to promote the coordinate recycling of these two receptors. This modified signaling downstream of EGFR1 to increase its autophosphorylation and activation of the proinvasive kinase PKB/Akt. We conclude that RCP provides a scaffold that promotes the physical association and coordinate trafficking of α5β1 and EGFR1 and that this drives migration of tumor cells into three-dimensional matrices.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                25 June 2012
                : 197
                : 7
                : 983-996
                Affiliations
                [1 ]Department of Molecular Biology and [2 ]Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
                [3 ]The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
                Author notes
                Correspondence to Hisataka Sabe: sabeh@ 123456med.hokudai.ac.jp
                Article
                201201065
                10.1083/jcb.201201065
                3384417
                22734003
                74ad00a1-cca7-4352-8914-1b44dee4c623
                © 2012 Onodera et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 12 January 2012
                : 25 May 2012
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article