8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inter-Strain Differences in Default Mode Network: A Resting State fMRI Study on Spontaneously Hypertensive Rat and Wistar Kyoto Rat

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic divergences among mammalian strains are presented phenotypically in various aspects of physical appearance such as body shape and facial features. Yet how genetic diversity is expressed in brain function still remains unclear. Functional connectivity has been shown to be a valuable approach in characterizing the relationship between brain functions and behaviors. Alterations in the brain default mode network (DMN) have been found in human neuropsychological disorders. In this study we selected the spontaneously hypertensive rat (SHR) and the Wistar Kyoto rat (WKY), two inbred rat strains with close genetic origins, to investigate variations in the DMN. Our results showed that the major DMN differences are the activities in hippocampal area and caudate putamen region. This may be correlated to the hyperactive behavior of the SHR strain. Advanced animal model studies on variations in the DMN may have potential to shed new light on translational medicine, especially with regard to neuropsychological disorders.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          Resting-state fMRI: a review of methods and clinical applications.

          Resting-state fMRI measures spontaneous low-frequency fluctuations in the BOLD signal to investigate the functional architecture of the brain. Application of this technique has allowed the identification of various RSNs, or spatially distinct areas of the brain that demonstrate synchronous BOLD fluctuations at rest. Various methods exist for analyzing resting-state data, including seed-based approaches, independent component analysis, graph methods, clustering algorithms, neural networks, and pattern classifiers. Clinical applications of resting-state fMRI are at an early stage of development. However, its use in presurgical planning for patients with brain tumor and epilepsy demonstrates early promise, and the technique may have a future role in providing diagnostic and prognostic information for neurologic and psychiatric diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decoupling of the brain's default mode network during deep sleep.

            The recent discovery of a circuit of brain regions that is highly active in the absence of overt behavior has led to a quest for revealing the possible function of this so-called default-mode network (DMN). A very recent study, finding similarities in awake humans and anesthetized primates, has suggested that DMN activity might not simply reflect ongoing conscious mentation but rather a more general form of network dynamics typical of complex systems. Here, by performing functional MRI in humans, it is shown that a natural, sleep-induced reduction of consciousness is reflected in altered correlation between DMN network components, most notably a reduced involvement of frontal cortex. This suggests that DMN may play an important role in the sustenance of conscious awareness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rat brains also have a default mode network.

              The default mode network (DMN) in humans has been suggested to support a variety of cognitive functions and has been implicated in an array of neuropsychological disorders. However, its function(s) remains poorly understood. We show that rats possess a DMN that is broadly similar to the DMNs of nonhuman primates and humans. Our data suggest that, despite the distinct evolutionary paths between rodent and primate brain, a well-organized, intrinsically coherent DMN appears to be a fundamental feature in the mammalian brain whose primary functions might be to integrate multimodal sensory and affective information to guide behavior in anticipation of changing environmental contingencies.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 February 2016
                2016
                : 6
                Affiliations
                [1 ]Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , Hsinchu 300, Taiwan
                [2 ]Department of Biomedical Imaging and Radiological Science, China Medical University , Taichung 404, Taiwan
                [3 ]Department of Electrical Engineering, National Taiwan University of Science and Technology , Taipei 106, Taiwan
                [4 ]Department of Nuclear Medicine, Chang Gung Memorial Hospital and University , Taoyuan 333, Taiwan
                [5 ]Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital and University , Taoyuan 333, Taiwan
                Author notes
                Article
                srep21697
                10.1038/srep21697
                4761976
                26898170
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article