7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae.

      1 , ,
      Journal of general microbiology
      Microbiology Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          mRNA steady-state levels and activities of enzymes of intermediary carbon metabolism (hexokinase, phosphoglucoisomerase, phosphofructokinase, glucose-6-phosphate dehydrogenase, phosphoglucomutase) and glucose-regulated enzymes (pyruvate decarboxylase, pyruvate dehydrogenase, invertase, alcohol dehydrogenase) were determined in glucose-limited continuous cultures of an industrial strain of Saccharomyces cerevisiae at different dilution rates (D) ranging from 0.05 to 0.315 h-1. The activity of most enzymes measured remained constant over this range except for alcohol dehydrogenase I/II which decreased proportionally with increasing dilution rate. A decrease in phosphoglucomutase activity occurred with increasing dilution rate but reached a minimum at D 0.2 h-1 and from thereon remained constant. A decrease in pyruvate decarboxylase activity and a slight decrease in phosphoglucoisomerase activity was observed. At D 0.29/0.315 h-1, at the onset of the Crabtree effect, most glycolytic enzymes remained constant except for pyruvate decarboxylase and glucose-6-phosphate dehydrogenase which increased at D 0.315 h-1 and alcohol dehydrogenase I/II which decreased. The ADHI/II and PDC1 mRNA levels obtained at the different dilution rates were in accordance with the activity measurements. The mRNA level of HXK1 decreased with increasing dilution rates, whereas the transcription of HXK2 increased. Pyruvate dehydrogenase (PDA1) and PGI1 mRNA fluctuated but no significant change could be detected. These results indicate that there is no transcriptional or translational regulation of glycolytic flux between D 0.05 h-1 and 0.315 h-1 except at the branch point between oxidative and fermentative metabolism (pyruvate decarboxylase/pyruvate dehydrogenase) at D 0.315 h-1. Surprisingly regulation of the Crabtree effect does not seem to involve transcriptional regulation of PDA1.(ABSTRACT TRUNCATED AT 250 WORDS)

          Related collections

          Author and article information

          Journal
          J Gen Microbiol
          Journal of general microbiology
          Microbiology Society
          0022-1287
          0022-1287
          Dec 1992
          : 138
          : 12
          Affiliations
          [1 ] Department of Molecular Cell Biology, University of Utrecht, The Netherlands.
          Article
          10.1099/00221287-138-12-2559
          1487726
          74da0759-58b1-46b1-8aa9-e0011007782c
          History

          Comments

          Comment on this article