0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Contractile Protein Interactions in Smooth Muscle

      ,

      Journal of Vascular Research

      S. Karger AG

      Cross-bridge cycle, Latch, Peptide inhibition, Myosin phosphorylation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Smooth muscle tone and ‘holding economy’ depend on the rate constants governing the cross-bridge cycle. Thus, calcium activation via calmodulin-dependent myosin light chain phosphorylation may determine the apparent rate constant (‘f’) at which cross-bridges enter the force-generating state, forming actin-attached, strongly bound cross-bridges. This phosphorylation of the light chain may be inhibited in skinned fibers by a peptide mimic of the calmodulin recognition site of the myosin light chain kinase (RS 20) that relaxes smooth muscle. In smooth muscle, the apparent cross-bridge detachment rate constant (‘g’) also seems to be variable, a low constant allowing for a high holding economy and low shortening velocity in the ‘latch state’. It may also account for force maintenance at low levels of myosin phosphorylation. Additionally, cross-bridge attachment may, however, be also controlled by other regulatory proteins such as calponin and caldesmon.

          Related collections

          Author and article information

          Journal
          JVR
          J Vasc Res
          10.1159/issn.1018-1172
          Journal of Vascular Research
          S. Karger AG
          978-3-8055-5380-3
          978-3-318-01726-7
          1018-1172
          1423-0135
          1991
          1991
          23 September 2008
          : 28
          : 1-3
          : 159-163
          Affiliations
          Department of Physiology II, University of Heidelberg, FRG
          Article
          158856 Blood Vessels 1991;28:159–163
          10.1159/000158856
          © 1991 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Pages: 5
          Categories
          Signal Recognition and Transduction in Vascular Smooth Muscle

          Comments

          Comment on this article